【摘要】平面向量的數(shù)量積如果一個(gè)物體在力F作用下產(chǎn)生位移S,那么F所做的功為:θ表示力F的方向與位移S的方向的夾角。位移SOA問題情境θFFθSW=│F││S│COSθ平面向量的數(shù)量積學(xué)習(xí)目標(biāo):1、掌握平面向量的數(shù)量積的定義及幾何意義2、掌握平面向量數(shù)量積的性質(zhì)下面請(qǐng)
2024-12-08 15:26
【摘要】b?b?a?a?圖①圖②平面向量數(shù)量積的物理背景及其含義導(dǎo)學(xué)案姓名:班級(jí):【目標(biāo)展示】1、掌握平面向量數(shù)量積的含義及其幾何意義2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系3、掌握平面向量數(shù)量積
2024-12-13 12:33
【摘要】 平面向量的數(shù)量積 平面向量數(shù)量積的物理背景及其含義 學(xué)習(xí)目標(biāo) 核心素養(yǎng) . ,理解其幾何意義.(重點(diǎn)) .(難點(diǎn)) 4.向量的數(shù)量積與實(shí)數(shù)的乘法的區(qū)別.(易混點(diǎn)) ,培養(yǎng)學(xué)...
2025-04-03 03:50
【摘要】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會(huì)數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長(zhǎng)度、角度和垂直問題?!局R(shí)梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-22 08:37
【摘要】已知兩個(gè)非零向量a和b,作OA=a,OB=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角。OBAθ問題1:回憶一下物理中“功”的計(jì)算,功的大小與哪些量有關(guān)?結(jié)合向量的學(xué)習(xí)你有什么想法?θ|b|cosθabB1
2025-08-16 17:32
【摘要】《平面向量數(shù)量積的物理背景及其含義》教案課題:§平面向量數(shù)量積的物理背景及其含義教材:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)數(shù)學(xué)必修4一、教學(xué)目標(biāo)1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,理解掌握數(shù)量積的性質(zhì)和運(yùn)算律,并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的判斷和運(yùn)算;3、體會(huì)類比的數(shù)學(xué)思想
2024-10-16 19:16
【摘要】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識(shí)與技能理解兩個(gè)向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計(jì)算向量的模,情感態(tài)度價(jià)值觀并推導(dǎo)平面內(nèi)兩點(diǎn)間的距離公式重點(diǎn)能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個(gè)向量垂直難點(diǎn)能運(yùn)用數(shù)量積的坐標(biāo)表示進(jìn)行向量數(shù)量積的運(yùn)算.
2024-12-25 06:47
【摘要】平面向量數(shù)量積的物理背景及其含義一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)λ=0或a=0時(shí),λa=0設(shè)a,
2025-06-20 22:21
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2
【摘要】2.1平面向量的實(shí)際背景及基本概念1.通過再現(xiàn)物理學(xué)中學(xué)過的力、位移等概念與向量之間的聯(lián)系,在類比抽象過程中引入向量概念,并建立學(xué)生學(xué)習(xí)向量的認(rèn)知基礎(chǔ).2.理解向量的有關(guān)概念:向量的表示法、向量的模、單位向量、相等向量、共線向量.基礎(chǔ)梳理一、向量的概念1.向量的實(shí)際背景.有下列物理量:位移、路程、速度、
2024-12-09 19:36
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??
2024-12-29 03:41
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【摘要】平面向量基本定理學(xué)習(xí)目標(biāo):1.理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義.2.在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來表示其他向量.3.會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題.學(xué)習(xí)重點(diǎn):會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題學(xué)習(xí)難點(diǎn):會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的
【摘要】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個(gè)數(shù),而且使問題具有代數(shù)化的特點(diǎn)、程序
2024-12-09 20:38