【摘要】導(dǎo)數(shù)的幾何意義學(xué)習(xí)要求1.理解導(dǎo)數(shù)的幾何意義2.會用導(dǎo)數(shù)的定義求曲線的切線方程自學(xué)評價1、割線的斜率:已知)(xfy?圖像上兩點))(,(00xfxA,))(,(00xxfxxB????,過A,B兩點割線的斜率是_________,即曲線割線的斜率就是___________.2、函數(shù))(xfy?在點
2024-12-09 23:15
【摘要】知識歸納:導(dǎo)數(shù)的計算一、幾個常用函數(shù)的導(dǎo)數(shù)1C′=0(C為常數(shù))2(xn)′=nxn-1(n∈Q)3(sinx)′=cosx4(cosx)′=-sinx=C(C是常數(shù)),求y′.解:y=f(x)=C,y=f(x+Δx)-f(x)=C-C=0,xy??=0.Y′=C′=xy
2024-12-09 20:36
【摘要】第3課時函數(shù)的最值.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..如圖,設(shè)鐵路線AB=50km,點C處與B之間的距離為10km,現(xiàn)將貨物從A運往C,已知1km鐵路費用為2元,1km公路費用為4元,在AB上M處修筑公路至C,使運費由A到C最省,求
2024-12-09 23:17
【摘要】拓展資料:拉格朗日法國數(shù)學(xué)家、力學(xué)家及天文學(xué)家拉格朗日于1736年1月25日在意大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關(guān)微積分之短文,因而對分析學(xué)產(chǎn)生興趣。他亦常與歐拉有書信往來,于探討數(shù)學(xué)難題「等周問題」之過程中,當時只有18歲的他就以純分析的方法發(fā)展了歐拉所開創(chuàng)的變分法,奠定變分法之理論基礎(chǔ)。后入都靈大學(xué)。1755年,
2024-12-25 06:37
【摘要】-*-函數(shù)的極值首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學(xué)習(xí)目標思維脈絡(luò)1.結(jié)合函數(shù)的圖像,正確理解函數(shù)極值的概念,了解可導(dǎo)函數(shù)有極值點的充分條件和必要條件.2.掌握利用導(dǎo)數(shù)判斷可導(dǎo)函數(shù)極值的方法,能熟練地求出已知函數(shù)的
2024-12-06 23:23
【摘要】類比推理學(xué)習(xí)目標1.結(jié)合已學(xué)過的數(shù)學(xué)實例,了解類比推理的含義;2.能利用類比進行簡單的推理,體會并認識合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.學(xué)習(xí)過程一、課前準備0(1,2,,)iain??,考察下列式子:111()1iaa??;121211()()()4iiaaaa???;
【摘要】歸納推理學(xué)習(xí)目標1.結(jié)合已學(xué)過的數(shù)學(xué)實例,了解歸納推理的含義;2.能利用歸納進行簡單的推理,體會并認識歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.學(xué)習(xí)過程一、課前準備在日常生活中我們常常遇到這樣的現(xiàn)象:(1)看到天空烏云密布,燕子低飛,螞蟻搬家,推斷天要下雨;(2)八月十五云遮月,來年正月十五雪打燈.以上例子可以得出推
【摘要】變化的快慢與變化率一、教學(xué)目標(1)理解瞬時速度,會運用瞬時速度的定義求物體在某一時刻的瞬時速度(2)理解瞬時變化率概念,實際背景,培養(yǎng)學(xué)生解決實際問題的能力二、教學(xué)重點、難點重點:瞬時速度,瞬時變化率概念及計算難點:瞬時變化率的實際意義和數(shù)學(xué)意義三、教學(xué)過程(一)、復(fù)習(xí)引入1、什么叫做平均變化
2024-12-09 23:16
【摘要】第1課時命題(即原命題、逆命題、否命題、逆否命題)..有一家主人是一個不善言辭的木訥之人,一天主人邀請張三、李四、王五三人吃飯聊天,時間到了,只有張三、李四準時赴約,王五打電話說:“臨時有急事不能來了.”主人聽到隨口說了一句:“你看看,該來的沒來.”張三聽到,臉色一沉,起來一聲不吭地
【摘要】變化的快慢與變化率【例1】已知質(zhì)點M按規(guī)律s=2t2+3作直線運動(位移單位:cm,時間單位:s),當t=2,Δt=,求ts??;(2)當t=2,Δt=,求ts??;(3)求質(zhì)點M在t=2時的瞬時速度【例2】某一物體的運動規(guī)律為s=t3-t2+2t+5(其中s表示位移,t表
【摘要】導(dǎo)數(shù)的幾何意義【例1】曲線f(x)=x3+2x+1在點M處的切線的斜率為2,求M的坐標【例2】由原點O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于O的點P1(x1,y1).再由P1引曲線的切線,切于不同于P1的點P2(x2,y2),…,如此繼續(xù)地作下去,得到點列{Pn(xn,yn)},試
【摘要】導(dǎo)數(shù)的概念及其幾何意義教學(xué)目標:1.導(dǎo)數(shù)的概念及幾何意義;2.求導(dǎo)的基本方法;3.導(dǎo)數(shù)的應(yīng)用.教學(xué)重點:導(dǎo)數(shù)的綜合應(yīng)用;教學(xué)難點:導(dǎo)數(shù)的綜合應(yīng)用.一.知識梳理1.導(dǎo)數(shù)的概念及幾何意義.2.求導(dǎo)的基本方法①定義法:??xf?=????xxfxxfxyx????????
【摘要】導(dǎo)數(shù)的概念及其幾何意義變化率問題:已知函數(shù)y=f(x),令Δx=21xx?,21()()yfxfx??,則當0x?時,比值2121()()fxfxxx??=yx,稱作函數(shù)f(x)從1x到2x得平均變化率.:物體在某一時刻的速度.Δx=0xx?,函數(shù)的增量000()
【摘要】變化的快慢與變化率1、本節(jié)教材的地位與作用:變化率對理解導(dǎo)數(shù)概念及其幾何意義有著重要作用.是導(dǎo)數(shù)概念產(chǎn)生的基礎(chǔ).充分掌握好變化率這個概念,為順利過渡瞬時變化率,體會導(dǎo)數(shù)思想與內(nèi)涵做好準備工作.通過對大量實例的分析,引導(dǎo)學(xué)生經(jīng)歷由物理學(xué)中的平均速度到其它事例的平均變化率過程.所以變化率是一個重要的過渡性概念.對變化率概念意義的建構(gòu)對導(dǎo)數(shù)概念的學(xué)
【摘要】第3課時計算導(dǎo)數(shù),求函數(shù)y=c,y=x,y=x2,y=等的導(dǎo)數(shù).y=c,y=x,y=x2,y=等的導(dǎo)數(shù).y=c,y=x,y=x2,y=等的導(dǎo)數(shù)公式解決問題..根據(jù)導(dǎo)數(shù)的概念,我們知道可以用定義法求函數(shù)f(x)=x3的導(dǎo)數(shù),那么是否有公式法來求它的導(dǎo)數(shù)呢?問題1:
2024-12-25 06:33