【摘要】解直角三角形(3)同步練習◆基礎訓練1.如圖1,在地面上用測角儀DF測得旗桿頂端A的仰角a=40°42′,已知F點到旗桿底端C的距離FC=米,測角儀高DF=米,則旗桿高AC約為(精確到米)()A.米B.米C.米D.米
2024-12-17 22:49
【摘要】解直角三角形教學目標:知識與技能:1、使學生理解直角三角形中五個元素的關(guān)系,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.2、通過綜合運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力.3、滲透數(shù)形結(jié)合的數(shù)學思想,培養(yǎng)學生良好的學習習慣.過程與方法:通
2024-12-18 18:04
【摘要】解直角三角形及其應用(第4課時)九年級下冊?本節(jié)課在前面研究了解直角三角形的方法,通過例3、例4介紹了利用直角三角形中余弦、正切關(guān)系解決有關(guān)測量、建筑等方面的實際問題的基礎上,結(jié)合“在航海中確定輪船距離燈塔有多遠”的實際問題介紹解直角三角形的理論在實際中的應用,進一步領悟解直角三角形的知識也是解決實際問題的有效數(shù)學工具,在思想和方
2024-12-11 01:32
【摘要】解直角三角形及其應用(第1課時)九年級下冊?本節(jié)課是在學習銳角三角函數(shù)之后,結(jié)合已學過的勾股定理和三角形內(nèi)角和定理,研究解直角三角形的方法.本節(jié)課既幫助學生進一步理解銳角三角函數(shù)的概念,同時又為以后的應用舉例打下基礎.課件說明?學習目標:1.了解解直角三角形的意義和條件;2.能根據(jù)已知的兩個條件(至少有一個
2024-12-27 17:28
【摘要】實際生活中,如:河道寬度、建筑物測量問題,航空、航海定位問題,均可以用銳角三角函數(shù)解決.建筑物測高例1如圖,河對岸有一小塔AB,在C處測得塔頂A的仰角為30°,沿CB所在直線向塔前進12米到達D處,測得塔頂A的仰角為45°.求塔高AB(精確到).ABCD3
2024-12-27 15:18
【摘要】九年級數(shù)學上冊(HS)
2025-06-28 12:12
【摘要】(1)已知平頂屋面的寬度L和坡頂?shù)脑O計高度h(或設計傾角a)(如圖)。你能求出斜面鋼條的長度和傾角a(或高度h)嗎?hLa例題:如圖,一棵大樹在一次強烈的地震中于離地面10米處折斷倒下,樹頂落在離樹根24米處.大樹在折斷之前高多少?解利用勾股定理可以求出折斷倒下部分的
2024-12-28 10:11
【摘要】,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BCAEDCB利用解直角三角形的方法解決實際問題時應注意什么?
2024-12-14 17:04
【摘要】課題:解直角三角形【學習目標】1、理解直角三角形中五個元素的關(guān)系,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.2、通過綜合運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步提高分析問題、解決問題的能力.一、舊知回顧1.在三角形中共有幾個元素?2.在Rt△ABC中,
2024-12-09 15:30
【摘要】解直角三角形(1)同步練習◆基礎訓練1.在Rt△ABC中,∠C=90°,∠A=30°,c=2,則a=______,b=_______2.在Rt△ABC中,∠C=90°,∠B=60°,a=4,則b=______,c=_______.3.在Rt△ABC中,∠C=90
2024-12-18 03:25
【摘要】年級九年級課題解直角三角形(2)課型新授教學媒體多媒體教學目標知識技能會把實際問題轉(zhuǎn)化為解直角三角形問題,能運用解直角三角形的方法解決問題;、俯角等概念,學會綜合運用所學知識解決實際題.過程方法經(jīng)歷解直角三角形的實際應用,運用轉(zhuǎn)化思想,學會把實
2024-12-09 09:38
【摘要】第23章解直角三角形解直角三角形及其應用知識目標目標突破第23章解直角三角形總結(jié)反思第1課時解直角三角形知識目標第1課時解直角三角形通過對直角三角形六個元素的分析與探索,了解解直角三角形的定義,會解直角三角形.目標突破目標會解直角三角形例1[教材例
2025-07-01 17:09
【摘要】滬科版九年級數(shù)學上冊第1課時解直角三角形解直角三角形及其應用狀元成才路狀元成才路狀元成才路新課導入ACBabc復習三角形的三角函數(shù)sinA=,sinB=,cosA=,cosB=,
2025-03-23 07:53
【摘要】解直角三角形(第1課時)已知平頂屋面的寬度L和坡頂?shù)脑O計高度h(或設計傾角a)(如圖).你能求出斜面鋼條的長度和傾角a(或高度h)嗎?hLa例:如圖所示,一棵大樹在一次強烈的地震中于離地面10米處折斷倒下,樹頂落在離樹根24米處.大樹在折斷之前高多少?解利用勾股定理可以
2025-07-02 23:42