【摘要】雙曲線的簡單幾何性質(zhì)(2)焦點(diǎn)在x軸上的雙曲線的幾何性質(zhì)雙曲線標(biāo)準(zhǔn)方程:YX12222??byax0??byax1、范圍:x≥a或x≤-a2、對(duì)稱性:關(guān)于x軸,y軸,原點(diǎn)對(duì)稱。3、頂點(diǎn):A1(-a,0),A2(a,0)4、軸:實(shí)軸A1A2虛軸
2024-12-07 23:34
【摘要】§雙曲線的簡單幾何性質(zhì)(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解并掌握雙曲線的幾何性質(zhì)【重點(diǎn)】雙曲線的幾何性質(zhì)【難點(diǎn)】雙曲線的幾何性質(zhì)一、自主學(xué)習(xí)56-58頁,完成下列問題1.雙曲線位于四條直線___________
2024-12-08 16:52
【摘要】§雙曲線的簡單幾何性質(zhì)(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.根據(jù)雙曲線的方程研究雙曲線的幾何性質(zhì);2.雙曲線與直線的關(guān)系.【重點(diǎn)】理解雙曲線的方程幾何性質(zhì)和直線的位置關(guān)系【難點(diǎn)】直線和雙曲線的位置關(guān)系一、自主學(xué)習(xí)P5
2024-12-18 00:10
【摘要】雙曲線的標(biāo)準(zhǔn)方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能1.了解雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)過程,能根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.2.掌握雙曲線兩種標(biāo)準(zhǔn)方程的形式過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線
2024-12-25 09:30
【摘要】橢圓的幾何性質(zhì)1課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)[知識(shí)與技能1.掌握橢圓的基本幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、長軸、短軸.2.感受如何運(yùn)用方程研究曲線的幾何性質(zhì)過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)橢圓的幾何性質(zhì)——范圍、對(duì)稱性、頂點(diǎn)教學(xué)流程\內(nèi)容\板
2024-12-10 00:30
【摘要】●教學(xué)目標(biāo)、實(shí)虛半軸、焦點(diǎn)、離心率、漸近線方程.●教學(xué)重點(diǎn)雙曲線的幾何性質(zhì)●教學(xué)難點(diǎn)雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-28 01:51
【摘要】拋物線的幾何性質(zhì)課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能掌握拋物線的幾何性質(zhì),能應(yīng)用拋物線的幾何性質(zhì)解決問題過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)拋物線的幾何性質(zhì).教學(xué)流程\內(nèi)容\板書關(guān)鍵點(diǎn)撥加工潤色一、復(fù)習(xí)回顧拋物線的標(biāo)
【摘要】§雙曲線的簡單性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;、會(huì)用雙曲線的定義解決實(shí)際問題;通過例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念..【學(xué)習(xí)重點(diǎn)】
2024-12-08 18:59
【摘要】雙曲線的簡單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】理解并掌握雙曲線的幾何性質(zhì).【重點(diǎn)難點(diǎn)】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:①3,4ab??,焦點(diǎn)在x軸上;②焦點(diǎn)在
2024-12-25 06:47
【摘要】2.雙曲線的簡單幾何性質(zhì)(共2課時(shí))一、教學(xué)目標(biāo)1.了解雙曲線的簡單幾何性質(zhì),如范圍、對(duì)稱性、頂點(diǎn)、漸近線和離心率等。2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用。難點(diǎn):雙曲線的漸近線。三、教學(xué)過程(一)復(fù)習(xí)提問引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-28 08:44
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程課后知能檢測蘇教版選修2-1一、填空題1.(2021·南京高二檢測)雙曲線x25-y24=1的焦點(diǎn)坐標(biāo)是________.【解析】∵c2=5+4=9,∴c=3,∴F(±3,0).【答案】(
2024-12-25 09:29
【摘要】第一課時(shí)?學(xué)習(xí)目標(biāo)?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學(xué)習(xí)目標(biāo)?、標(biāo)準(zhǔn)方程及其求法;?、焦距、焦點(diǎn)位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離和等于常數(shù)(大于|F1F2|)的點(diǎn)軌跡叫做橢圓。這兩
2024-12-09 16:17
【摘要】雙曲線的幾何性質(zhì)一、基礎(chǔ)過關(guān)1.雙曲線2x2-y2=8的實(shí)軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-23 04:57
【摘要】§圓錐曲線教學(xué)目標(biāo),經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數(shù)學(xué)符號(hào)或自然語言的描述。2.通過用平面截圓錐面,感受、了解雙曲線的定義。能用數(shù)學(xué)符號(hào)或自然語言描述雙曲線的定義。教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):橢圓、拋物線、雙曲線的定義。難點(diǎn):用數(shù)學(xué)符號(hào)或自然語言描述三種曲線的定義[教
2024-12-28 21:22
【摘要】曲線與方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能(1)了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;(2)初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;[(3)學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;(4)強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思