【摘要】1.設(shè)函數(shù)。(1)當(dāng)a=1時,求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對函數(shù)求導(dǎo)得:,定義域為(0,2)當(dāng)a=1時,令當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。當(dāng)有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點取到。。2.已知函數(shù)其中實數(shù)。(I)若a=2,求曲線在點處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-04-08 07:03
【摘要】單調(diào)性與最大(?。┲档谌n時函數(shù)的最值問題提出?,如果函數(shù)的圖象存在最高點或最低點,它又反映了函數(shù)的什么性質(zhì)?知識探究(一)觀察下列兩個函數(shù)的圖象:圖1ox0xMy思考1:這兩個函數(shù)圖象有何共同特征?yxox0圖2MAB
2024-11-30 08:36
【摘要】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對象:高三課時第1課時提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識的一個重要交匯點,是聯(lián)系多個章節(jié)內(nèi)容以及解決相關(guān)問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-05-02 00:39
【摘要】(?。┲?、函數(shù)單調(diào)性的定義設(shè)函數(shù)y=f(x)的定義域為I:如果對于屬于定義域I內(nèi)某個區(qū)間D上的任意兩個自變量的值,(1)當(dāng)時,都有,那么就說函數(shù)f(x)在區(qū)間D上是增函數(shù):(2)當(dāng)時,都有,那么就說函數(shù)f(x)在區(qū)間D上是減函數(shù)。注意:具有三個特征:①屬于同一區(qū)間②任
2025-07-03 22:01
【摘要】北京八中2021屆高三數(shù)學(xué)(理科)復(fù)習(xí)函數(shù)作業(yè)3(單調(diào)性與最值2)1、函數(shù)()yfx?是R上的偶函數(shù),且在(,0]??上為增函數(shù)。若()(2)faf?,則實數(shù)a的取值范圍是()A.2a?B.2a??C.22a???D.2a??或2a?2、設(shè)函數(shù)()yf
2024-12-18 18:55
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件13《函數(shù)的最值》知識網(wǎng)絡(luò)最值求解方法最值問題常用解法最值綜合問題最值應(yīng)用問題“恒成立”問題“存在”問題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結(jié)合法,三角函數(shù)有界法,反函數(shù)法。復(fù)習(xí)導(dǎo)引,
2024-12-01 02:54
【摘要】函數(shù)單調(diào)的概念?我們在函數(shù)的基本性質(zhì)中曾經(jīng)討論過函數(shù)的單調(diào)性問題,在此我們再次回顧一下函數(shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對于區(qū)間(a,b)內(nèi)的任意兩點x1,x2,滿足?(1)當(dāng)x1x2時,恒有f(x1)?f(x2)(或f(x1)f(x2))
2024-09-03 20:29
【摘要】北京八中2021屆高三數(shù)學(xué)(理科)復(fù)習(xí)函數(shù)作業(yè)2(單調(diào)性與最值1)1、下列函數(shù)中,既是偶函數(shù)又在(0,)??單調(diào)遞增的函數(shù)是()A.3yx?B.||1yx??C.21yx???D.||2xy??2、函數(shù)()fx的定義域為R,(1)2f??,對任意xR?,'()2f
【摘要】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習(xí):1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2024-11-30 23:50
【摘要】第6講三角函數(shù)單調(diào)性及最值[學(xué)習(xí)目標(biāo)]1.掌握y=sinx的最大值與最小值,并會求簡單三角函數(shù)的值域和最值.2.掌握y=sinx的單調(diào)性,并能利用單調(diào)性比較大小.=Asin(ωx+φ)的單調(diào)區(qū)間.[知識鏈接]1.怎樣求函數(shù)f(x)=Asin(ωx+φ)的最小正周期?答 由誘導(dǎo)公式一知:對任意x∈R,都有Asin[(ωx+φ)+2π]=Asin(ωx+φ),
2025-08-07 03:00
【摘要】│函數(shù)的單調(diào)性與最值│知識梳理知識梳理│知識梳理│知識梳理│知識梳理│要點探究要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究│要點探究
2025-08-04 05:00
【摘要】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點難點:能夠判定極值點,并能求解閉區(qū)間上的最值問題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2025-08-10 05:39
【摘要】新疆和靜高級中學(xué)高三第一輪復(fù)習(xí)函數(shù)的單調(diào)性新疆和靜高級中學(xué)1、函數(shù)的單調(diào)性的定義2、判斷函數(shù)單調(diào)性(求單調(diào)區(qū)間)的方法:(1)從定義入手(2)從導(dǎo)數(shù)入手(3)從圖象入手(4)從熟悉的函數(shù)入手(5)從復(fù)合函數(shù)的單調(diào)性規(guī)律入手注:先求函數(shù)的定義域3、函數(shù)單調(diào)性的證明:定義
2024-12-02 17:15
2024-12-09 03:01
【摘要】(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-02-02 17:16