【摘要】平面上兩點間的距離已知四點A(-1,3),B(3,-2),C(6,-1),D(2,4),則四邊形ABCD是否為平行四邊形?分析:如何判斷一個四邊形是否為平行四邊形?相等問題:如何計算兩點間的距離?過點A向X軸作垂線,過點B向Y軸作垂線,兩條垂線交于點P,則點P的坐標(biāo)是(-1,-2),且
2024-11-18 20:55
【摘要】[課題]平面上兩點間的距離[知識摘記]平面上兩點111222(,),(,)PxyPxy,則12PP?;中點坐標(biāo)為。[例題解析]例1(1)求(1,3),(2,5)AB?兩點之間的距離;(2)已知(0,10),(,5)ABa
2024-12-08 16:54
【摘要】兩點間的距離今天我說課的內(nèi)容是人教版數(shù)學(xué)必修(2)第三章“兩點間的距離”,主要內(nèi)容是建立直角坐標(biāo)系中兩點間的距離公式和用坐標(biāo)法證明簡單的平面幾何問題。我將通過教材分析、目標(biāo)分析、教法學(xué)法、教學(xué)程序和教學(xué)評價五個部分,闡述本課的教學(xué)設(shè)計。一一一、、、教教教材材材與與與
2024-12-23 12:46
【摘要】問題探究;,,,,,) ?。ǎ?,,,,,) (距離:兩點,再求它們之間的,標(biāo)出:在空間直角坐標(biāo)系中 探究)753()106(2)413()532(11BABABA。與原點間的距離是,,一點中,任意:在空間直角坐標(biāo)系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長:如果
2024-12-07 03:40
【摘要】兩點間的距離公式問題1、求兩點A(—2,0),B(3,0)間的距離112233-1-1-2-2yxAB||2121xxPP??x1≠x2,y1=y2問題2、求兩點A(0,2),B(0,-2)間的距離11223
2024-12-08 02:58
【摘要】兩點間的距離和線段的中點坐標(biāo)匯總?1、了解平面直角坐標(biāo)系中兩點間的距離公式和線段中點坐標(biāo)公式的推導(dǎo)過程;?2、理解兩個公式的結(jié)構(gòu)特點并能熟練應(yīng)用兩個公式解決相關(guān)問題.學(xué)習(xí)目標(biāo)8.1.1《兩點間的距離與線段中點的坐標(biāo)》復(fù)習(xí)鞏固一、溫故知新22yx?1、平面直角
2024-08-24 19:07
【摘要】§空間兩點間的距離公式一、教材分析平面直角坐標(biāo)系中,兩點之間的距離公式是學(xué)生已學(xué)的知識,不難把平面上的知識推廣到空間,遵循從易到難、從特殊到一般的認(rèn)識過程,利用類比的思想方法,借助勾股定理得到空間任意一點到原點的距離;從平面直角坐標(biāo)系中的方程x2+y2=r2表示以原點為圓心,r為半徑的圓,推廣到空間
2024-12-23 11:32
【摘要】空間兩點間的距離公式一、教材分析平面直角坐標(biāo)系中,兩點之間的距離公式是學(xué)生已學(xué)的知識,不難把平面上的知識推廣到空間,遵循從易到難、從特殊到一般的認(rèn)識過程,利用類比的思想方法,借助勾股定理得到空間任意一點到原點的距離;從平面直角坐標(biāo)系中的方程x2+y2=r2表示以原點為圓心,r為半徑的圓,推廣到空間直角坐標(biāo)系中的方程x2+y2+
2024-12-28 02:39
【摘要】問題探究;,,,,,) ?。ǎ?,,,,,) ?。ň嚯x:兩點,再求它們之間的,標(biāo)出:在空間直角坐標(biāo)系中 探究)753()106(2)413()532(11BABABA。與原點間的距離是,,一點中,任意:在空間直角坐標(biāo)系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長:如果 探
2025-03-22 14:58
【摘要】【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)空間兩點間的距離公式課后訓(xùn)練北師大版必修21.已知△ABC的三個頂點為A(3,3,2),B(4,-3,7),C(0,5,1),則BC邊上的中線長為().A.2B.3C.4D.52.點P(-6,-8,10)到x軸的距離是().
2024-12-23 03:16
【摘要】平面上兩點間的距離一、復(fù)習(xí)引入:試求:P1,P2兩點間的距離已知:P1(x1,y1)和P2(x2,y2),xoy1)、y1=y21x2x2)、x1=x2xoy1y2y1221||PPxx??1221||PPyy????111yxP,??222yxP,??
2024-12-01 21:10
【摘要】問題1:長方體的對角線是長方體中的那一條線段?問題2:怎樣測量長方體的對角線的長?問題3:已知長方體的長、寬、高分別是a、b、c,則對角線的長222cbad???問題4:給出空間兩點A(x1,y1,z1),P(x2,y2,z2)可否類比得到一個距離公式?1、設(shè)O(0,0,0),P(x0,y0,z0)
2024-12-07 17:16
【摘要】xo右手直角坐標(biāo)系空間直角坐標(biāo)系yz—Oxyz橫軸縱軸豎軸111空間直角坐標(biāo)系通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為xOy平面、yOz平面、zOx平面.右手直角坐標(biāo)系:右手直角坐標(biāo)系以右手握住z軸,當(dāng)右手的
2024-12-08 12:11
【摘要】人教B版數(shù)學(xué)必修2:空間兩點間的距離公式1.教學(xué)任務(wù)分析通過特殊到一般的情況推導(dǎo)出空間兩點間的距離公式2.教學(xué)重點和難點重點:空間兩點間的距離公式難點:一般情況下,空間兩點間的距離公式的推導(dǎo)。3.教學(xué)基本流程4、
2024-12-09 23:22
【摘要】人教B版數(shù)學(xué)必修2:空間兩點的距離公式教學(xué)目標(biāo):探索并得出空間兩點間的距離公式教學(xué)重點:探索并得出空間兩點間的距離公式教學(xué)過程:給定空間兩點),,(1111zyxM和),,(2222zyxM,過21,MM各作三個平面分別垂直于三個坐標(biāo)軸。這六個平面構(gòu)成—個以線段21MM為一條對角線的長方體,見圖
2024-12-09 23:21