【摘要】第1頁(yè)共9頁(yè)探究圓錐曲線中離心率的問題離心率是圓錐曲線中的一個(gè)重要的幾何性質(zhì),在高考中頻繁出現(xiàn),下面給同學(xué)們介紹常用的四種解法。一、直接求出a、c,求解e已知標(biāo)準(zhǔn)方程或a、c易求時(shí),可利用離心率公式來求解。ace?例1.過雙曲線C:的左頂點(diǎn)A作斜率為1的直線,若與雙曲線M的兩條漸)0b(1yx2???l近線分別相交于點(diǎn)
2025-04-09 02:38
【摘要】2019屆高二文科數(shù)學(xué)新課改試驗(yàn)學(xué)案(10)---圓錐曲線中的定值定點(diǎn)問題的離心率為,點(diǎn)在C上.(I)求C的方程;(II)直線l不經(jīng)過原點(diǎn)O,且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB中點(diǎn)為M,證明:直線OM的斜率與直線l的斜率乘積為定值.:過點(diǎn)A(2,0),B(0,1)兩點(diǎn).(I)求橢圓C的方程
2025-04-09 00:03
【摘要】界首一中王超對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練對(duì)應(yīng)演練
2024-08-24 10:59
【摘要】Doc521資料分享網(wǎng)()–資料分享我做主!數(shù)學(xué)高考綜合能力題選講29《條件開放的探索性問題》100080北京中國(guó)人民大學(xué)附中梁麗平題型預(yù)測(cè)探索性問題的明顯特征是問題本身具有開放性及問題解決的過程中帶有較強(qiáng)的探索性.對(duì)于條件開放的探索性問題,往往采用分析法,從結(jié)論和部分已知的條件入手,執(zhí)果索因,導(dǎo)出所需的條件.另外,需要注意的是,這一
2025-05-02 13:17
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長(zhǎng),半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-08-09 00:15
【摘要】WORD資料可編輯圓錐曲線中的最值取值范圍問題=l(a0,b0)的左、右焦點(diǎn),P為雙曲線上的一點(diǎn),若,且的三邊長(zhǎng)成等差數(shù)列.又一橢圓的中心在原點(diǎn),短軸的一個(gè)端點(diǎn)到其右焦點(diǎn)的距離為,雙曲線與該橢圓離心率之積為。(I)求橢圓的方程;(
2025-04-09 00:02
【摘要】知識(shí)結(jié)構(gòu)?????圓錐曲線橢圓雙曲線拋物線標(biāo)準(zhǔn)方程幾何性質(zhì)標(biāo)準(zhǔn)方程幾何性質(zhì)標(biāo)準(zhǔn)方程幾何性質(zhì)第二定義第二定義統(tǒng)一定義綜合應(yīng)用橢圓雙曲線拋物線幾何條件與兩個(gè)定點(diǎn)的距離的和等于常數(shù)
2024-08-24 04:45
【摘要】第九章 幾何問題的轉(zhuǎn)換解析幾何幾何問題的轉(zhuǎn)換一、基礎(chǔ)知識(shí):在圓錐曲線問題中,經(jīng)常會(huì)遇到幾何條件與代數(shù)條件的相互轉(zhuǎn)化,合理的進(jìn)行幾何條件的轉(zhuǎn)化往往可以起到“四兩撥千斤”的作用,極大的簡(jiǎn)化運(yùn)算的復(fù)雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉(zhuǎn)化。1、在幾何問題的轉(zhuǎn)化
【摘要】Doc521資料分享網(wǎng)()–資料分享我做主!數(shù)學(xué)高考綜合能力題選講28100080北京中國(guó)人民大學(xué)附中梁麗平題型預(yù)測(cè)探索性問題是指那些題目條件不完備、結(jié)論不明確、或者答案不唯一,給學(xué)生留有較大探索余地的試題.這一類問題立意于對(duì)發(fā)散思維能力的培養(yǎng)和考察,具有開放性,解法活、形式新,無法套用統(tǒng)一的解題模
2025-05-02 13:03
【摘要】?解析幾何的產(chǎn)生?十六世紀(jì)以后,由于生產(chǎn)和科學(xué)技術(shù)的發(fā)展,天文、力學(xué)、航海等方面都對(duì)幾何學(xué)提出了新的需要。比如,德國(guó)天文學(xué)家開普勒發(fā)現(xiàn)行星是繞著太陽(yáng)沿著橢圓軌道運(yùn)行的,太陽(yáng)處在這個(gè)橢圓的一個(gè)焦點(diǎn)上;意大利科學(xué)家伽利略發(fā)現(xiàn)投擲物體試驗(yàn)著拋物線運(yùn)動(dòng)的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復(fù)雜的曲線,原先的一套方法顯然已經(jīng)不適應(yīng)了
2024-08-24 10:19
【摘要】......關(guān)于圓錐曲線的中點(diǎn)弦問題直線與圓錐曲線相交所得弦中點(diǎn)問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個(gè)熱點(diǎn)問題。這類問題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問題;(2)求弦中點(diǎn)的軌跡方程問題;
【摘要】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個(gè)重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識(shí):1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
2025-04-09 00:04
【摘要】圓錐曲線中的定點(diǎn)問題明對(duì)任意情況都成立找到定點(diǎn),再證方法三:通過特殊位置的值求出方法二:通過計(jì)算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點(diǎn)F(1,0),O為坐
【摘要】圓錐曲線過定點(diǎn)問題一、小題自測(cè)1.無論取任何實(shí)數(shù),直線必經(jīng)過一個(gè)定點(diǎn),則這個(gè)定點(diǎn)的坐標(biāo)為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個(gè)常見結(jié)論:滿足一定條件的曲線上兩點(diǎn)連結(jié)所得的直線過定點(diǎn)或滿足一定條件的曲線過定點(diǎn),這構(gòu)成了過定點(diǎn)問題。1、過定點(diǎn)模型:是圓錐曲線上的兩動(dòng)點(diǎn),是一定點(diǎn),其
【摘要】WORD資料可編輯專題08解鎖圓錐曲線中的定點(diǎn)與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案】(1
2025-05-02 12:58