freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年中考數(shù)學(xué)沖刺復(fù)習(xí)資料:二次函數(shù)壓軸題(含答案)-閱讀頁

2025-07-13 09:06本頁面
  

【正文】 為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.(1)求直線CD的解析式;(2)求拋物線的解析式;(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45176。∵OC=OD,且OC⊥OD,∴△OCD為等腰直角三角形,∠ODC=45176。.又∵△OCD為等腰直角三角形,∴∠ODC=∠OCD=45176?!唷鰿EQ∽△CDO.(4)存在.如答圖②所示,作點(diǎn)C關(guān)于直線QE的對(duì)稱點(diǎn)C′,作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C″,連接C′C″,交OD于點(diǎn)F,交QE于點(diǎn)P,則△PCF即為符合題意的周長(zhǎng)最小的三角形,由軸對(duì)稱的性質(zhì)可知,△PCF的周長(zhǎng)等于線段C′C″的長(zhǎng)度.(證明如下:不妨在線段OD上取異于點(diǎn)F的任一點(diǎn)F′,在線段QE上取異于點(diǎn)P的任一點(diǎn)P′,連接F′C″,F(xiàn)′P′,P′C′.由軸對(duì)稱的性質(zhì)可知,△P′CF′的周長(zhǎng)=F′C″+F′P′+P′C′;而F′C″+F′P′+P′C′是點(diǎn)C′,C″之間的折線段,由兩點(diǎn)之間線段最短可知:F′C″+F′P′+P′C′>C′C″,即△P′CF′的周長(zhǎng)大于△PCE的周長(zhǎng).)如答圖③所示,連接C′E,∵C,C′關(guān)于直線QE對(duì)稱,△QCE為等腰直角三角形,∴△QC′E為等腰直角三角形,∴△CEC′為等腰直角三角形,∴點(diǎn)C′的坐標(biāo)為(4,5);∵C,C″關(guān)于x軸對(duì)稱,∴點(diǎn)C″的坐標(biāo)為(0,﹣1).過點(diǎn)C′作C′N⊥y軸于點(diǎn)N,則NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===.綜上所述,在P點(diǎn)和F點(diǎn)移動(dòng)過程中,△PCF的周長(zhǎng)存在最小值,最小值為.12.如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).(2)試判斷△BCD的形狀,并說明理由.(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.考點(diǎn):二次函數(shù)綜合題..專題:壓軸題.分析:(1)利用待定系數(shù)法即可求得函數(shù)的解析式;(2)利用勾股定理求得△BCD的三邊的長(zhǎng),然后根據(jù)勾股定理的逆定理即可作出判斷;(3)分p在x軸和y軸兩種情況討論,舍出P的坐標(biāo),根據(jù)相似三角形的對(duì)應(yīng)邊的比相等即可求解.解答:解:(1)設(shè)拋物線的解析式為y=ax2+bx+c由拋物線與y軸交于點(diǎn)C(0,3),可知c=3.即拋物線的解析式為y=ax2+bx+3.把點(diǎn)A(1,0)、點(diǎn)B(﹣3,0)代入,得解得a=﹣1,b=﹣2∴拋物線的解析式為y=﹣x2﹣2x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴頂點(diǎn)D的坐標(biāo)為(﹣1,4);(2)△BCD是直角三角形.理由如下:解法一:過點(diǎn)D分別作x軸、y軸的垂線,垂足分別為E、F.∵在Rt△BOC中,OB=3,OC=3,∴BC2=OB2+OC2=18在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,∴CD2=DF2+CF2=2在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,∴BD2=DE2+BE2=20∴BC2+CD2=BD2∴△BCD為直角三角形.解法二:過點(diǎn)D作DF⊥y軸于點(diǎn)F.在Rt△BOC中,∵OB=3,OC=3∴OB=OC∴∠OCB=45176?!唷螧CD=180176?!唷鰾CD為直角三角形.(3)①△BCD的三邊,==,又=,故當(dāng)P是原點(diǎn)O時(shí),△ACP∽△DBC;②當(dāng)AC是直角邊時(shí),若AC與CD是對(duì)應(yīng)邊,設(shè)P的坐標(biāo)是(0,a),則PC=3﹣a,=,即=,解得:a=﹣9,則P的坐標(biāo)是(0,﹣9),三角形ACP不是直角三角形,則△ACP∽△CBD不成立;③當(dāng)AC是直角邊,若AC與BC是對(duì)應(yīng)邊時(shí),設(shè)P的坐標(biāo)是(0,b),則PC=3﹣b,則=,即=,解得:b=﹣,故P是(0,﹣)時(shí),則△ACP∽△CBD一定成立;④當(dāng)P在x軸上時(shí),AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標(biāo)是(d,0).則AP=1﹣d,當(dāng)AC與CD是對(duì)應(yīng)邊時(shí),=,即=,解得:d=1﹣3,此時(shí),兩個(gè)三角形不相似;⑤當(dāng)P在x軸上時(shí),AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標(biāo)是(e,0).則AP=1﹣e,當(dāng)AC與DC是對(duì)應(yīng)邊時(shí),=,即=,解得:e=﹣9,符合條件.總之,符合條件的點(diǎn)P的坐標(biāo)為:.對(duì)應(yīng)練習(xí)13.如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點(diǎn),過點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).(1)求拋物線的解析式;(2)在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)D,使△BCD的周長(zhǎng)最?。咳舸嬖?,求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由;(3)若點(diǎn)E是(1)中拋物線上的一個(gè)動(dòng)點(diǎn),且位于直線AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).考點(diǎn):二次函數(shù)綜合題..專題:代數(shù)幾何綜合題;壓軸題.分析:(1)利用待定系數(shù)法求二次函數(shù)解析式解答即可;(2)利用待定系數(shù)法求出直線AC的解析式,然后根據(jù)軸對(duì)稱確定最短路線問題,直線AC與對(duì)稱軸的交點(diǎn)即為所求點(diǎn)D;(3)根據(jù)直線AC的解析式,設(shè)出過點(diǎn)E與AC平行的直線,然后與拋物線解析式聯(lián)立消掉y得到關(guān)于x的一元二次方程,利用根的判別式△=0時(shí),△ACE的面積最大,然后求出此時(shí)與AC平行的直線,然后求出點(diǎn)E的坐標(biāo),并求出該直線與x軸的交點(diǎn)F的坐標(biāo),再求出AF,再根據(jù)直線l與x軸的夾角為45176?!帱c(diǎn)F到AC的距離為=,又∵AC==3,∴△ACE的最大面積=3=,此時(shí)E點(diǎn)坐標(biāo)為(,﹣).14.如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).(1)求拋物線的解析式及它的對(duì)稱軸方程;(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;(3)試判斷△AOC與△COB是否相似?并說明理由;(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.考點(diǎn):二次函數(shù)綜合題..專題:壓軸題.分析:(1)利用待定系數(shù)法求出拋物線解析式,利用配方法或利用公式x=求出對(duì)稱軸方程;(2)在拋物線解析式中,令x=0,可求出點(diǎn)C坐標(biāo);令y=0,可求出點(diǎn)B坐標(biāo).再利用待定系數(shù)法求出直線BD的解析式;(3)根據(jù),∠AOC=∠BOC=90176?!唷鰽OC∽△COB.(4)∵拋物線的對(duì)稱軸方程為:x=3,可設(shè)點(diǎn)Q(3,t),則可求得:AC===,AQ==,CQ==.i)當(dāng)AQ=CQ時(shí),有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)當(dāng)AC=AQ時(shí),有=,t2=﹣5,此方程無實(shí)數(shù)根,∴此時(shí)△ACQ不能構(gòu)成等腰三角形;iii)當(dāng)AC=CQ時(shí),有=,整理得:t2﹣8t+5=0,解得:t=4177。A(1,0),B(0,2),拋物線y=x2+bx﹣2的圖象過C點(diǎn).(1)求拋物線的解析式;(2)平移該拋物線的對(duì)稱軸所在直線l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.考點(diǎn):二次函數(shù)綜合題..專題:壓軸題.分析:如解答圖所示:(1)首先構(gòu)造全等三角形△AOB≌△CDA,求出點(diǎn)C的坐標(biāo);然后利用點(diǎn)C的坐標(biāo)求出拋物線的解析式;(2)首先求出直線BC與AC的解析式,設(shè)直線l與BC、AC交于點(diǎn)E、F,則可求出EF的表達(dá)式;根據(jù)S△CEF=S△ABC,列出方程求出直線l的解析式;(3)首先作出?PACB,然后證明點(diǎn)P在拋物線上即可.解答:解:(1)如答圖1所示,過點(diǎn)C作CD⊥x軸于點(diǎn)D,則∠CAD+∠ACD=90176。∠OAB+∠CAD=9017
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1