【摘要】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
2025-04-08 03:55
【摘要】應(yīng)用基本不等式求最值江西師大附中黃潤(rùn)華一、復(fù)習(xí)回顧基本不等式:(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))2ababab???2222abab???22,,2abRabab???0,0,2ababab????已
2024-08-24 06:17
【摘要】基本不等式應(yīng)用一:直接應(yīng)用求最值例1:求下列函數(shù)的值域(1)y=3x2+(2)y=x+解:(1)y=3x2+≥2=∴值域?yàn)閇,+∞)(2)當(dāng)x>0時(shí),y=x+≥2=2;當(dāng)x<0時(shí),y=x+=-(-x-)≤-2=-2∴值域?yàn)椋ǎ蓿?]∪[2,+∞)二:湊項(xiàng)例2:已知,求函數(shù)的最大值。解:因,所以首先要“調(diào)整”符號(hào),又不是常數(shù)
2025-08-04 11:31
【摘要】......例談?dòng)没静坏仁角笞钪档乃拇蟛呗哉静坏仁剑ó?dāng)且僅當(dāng)時(shí)等號(hào)成立)是高中必修五《不等式》一章的重要內(nèi)容之一,也是高考常考的重要知識(shí)點(diǎn)。從本質(zhì)上看,基本不等式反映了兩個(gè)正數(shù)和與積之間的不等關(guān)系,所以在求取積的最值、和的最值當(dāng)中,基本不等式將會(huì)煥發(fā)出強(qiáng)大的生命力,它將會(huì)是解決最值問題的強(qiáng)有力工具。本文將結(jié)合幾個(gè)實(shí)例談?wù)勥\(yùn)用基
2025-07-12 07:18
【摘要】基本不等式與最大(?。┲祷静坏仁饺绻际钦龜?shù),那么,當(dāng)且僅當(dāng)都是正數(shù)時(shí),等號(hào)成立.abba??2ba,CAOBD問題1.把一段16㎝長(zhǎng)的鐵絲彎成形狀不同的矩形,什么時(shí)候面積最大?2.在面積為16c㎡的所有不同形狀的矩形中
2024-12-02 16:44
【摘要】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)
【摘要】正余弦定理考點(diǎn)梳理:1.直角三角形中各元素間的關(guān)系:如圖,在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三邊之間的關(guān)系:a2+b2=c2。(勾股定理)A(2)銳角之間的關(guān)系:A+B=90°;c(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義)bsinA=cosB=
2025-07-11 06:12
【摘要】必修5復(fù)習(xí)(一)解三角形1、掌握正、余弦定理及相應(yīng)的公式變形;2、掌握在各種條件下解三角形的方法;(邊長(zhǎng)、角度、面積)3、理解在處理三角形問題時(shí)“邊角統(tǒng)一”思想;4、了解在實(shí)際問題中解三角形思想的運(yùn)用;(距離、高度、角度、面積)例題:BBA
2024-11-29 01:52
【摘要】......第42課三角形中的最值問題考點(diǎn)提要1.掌握三角形的概念與基本性質(zhì).2.能運(yùn)用正弦定理、余弦定理建立目標(biāo)函數(shù),解決三角形中的最值問題.基礎(chǔ)自測(cè)1.(1)△ABC中,,則A的值為30°或90&
2025-04-08 05:43
【摘要】4cm2cm拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm2428424拼成的平行四邊形三角形底/cm高/cm面積/cm2底/cm高/cm面積/cm24144124cm1cm拼成的平行四邊形三角形
2024-08-13 23:38
【摘要】二次函數(shù)與三角形周長(zhǎng),面積最值問題知識(shí)點(diǎn):1、二次函數(shù)線段,周長(zhǎng)問題2、二次函數(shù)線段和最小值線段差最大值問題3、二次函數(shù)面積最大值問題【新授課】考點(diǎn)1:線段、周長(zhǎng)問題例1.(2018·宜賓)在平面直角坐標(biāo)系中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.(1)求拋物線的解析式;(
2025-04-08 06:24
【摘要】一類最值不等式問題的求解通法羅增儒有一類最值不等式問題,可以一般地表示為:求證:有的地方也將其表示為雙重最值的形式:這類問題求解思路靈活,文[1]給出的多種解法主要涉及分類討論和反設(shè)歸謬,本文要提供的是一種直接求解的思路,只用到設(shè)元、消元運(yùn)算,且具有明顯的可操作性。方法的示例例1.試證對(duì)任意的,有。分析:若將求證式左邊用字母x來表示,則問題便轉(zhuǎn)
2025-06-22 19:59
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^程中往往會(huì)遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)
2024-08-11 12:30
【摘要】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11
【摘要】1三角形的面積杜軍英大家今天的表情怎么這么反常呢?鬼精靈,不就因?yàn)槔蠋熃裉煲矌狭思t領(lǐng)巾嘛!這條紅領(lǐng)巾可是老師特意為自己制作的,誰能說出老師做這條紅領(lǐng)巾大約用了多少布料?剛才大家的回答都只是一些猜測(cè),怎么才能準(zhǔn)確求出這條紅領(lǐng)巾的面積呢?我相信:通過這節(jié)課的學(xué)習(xí),大家一定能很快解決這個(gè)問題。下面我們一起來探究《三角形的面積》
2024-12-12 00:39