【摘要】二次函數(shù)應(yīng)用②1.心理學(xué)家發(fā)現(xiàn),學(xué)生對概念的接受能力y和提出概念所用的時間x(單位:分)之間大體滿足函數(shù)關(guān)系式:(0≤x≤30)。y的值越大,表示接受能力越強。試根據(jù)關(guān)系式回答:(1)若提出概念用10分鐘,學(xué)生的接受能力是多少?(2)概念提出多少時間時?學(xué)生的接受能力達到最強?2.某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個
2025-08-10 03:42
【摘要】給你長6m的鋁合金條,設(shè)問:①你能用它制成一矩形窗框嗎?②怎樣設(shè)計,窗框的透光面積最大?步驟:第一步設(shè)自變量;第二步建立函數(shù)的表達式;第三步確定自變量的取值范圍;第四步根據(jù)頂點坐標公式或配方法求出最大值或最小值(在自變量的取值范圍內(nèi))用長為6m的鋁合金條制成如圖形狀的矩形窗框,
2024-12-16 18:55
【摘要】二次函數(shù)的應(yīng)用解決形狀是拋物線的實際問題學(xué)以致用復(fù)習(xí)?求函數(shù)的解析式?1)(2020云南中考試題)已知在同意個直角坐標系中,反比例函數(shù)y=5/X與二次函數(shù)y=-x2+2x+c的圖像交于點A(-1,m)?(1)求m,c的值(2)求二次函數(shù)的對稱軸和頂點坐標。復(fù)習(xí)解析式的求法?已知二次函數(shù)的頂點是(
2024-12-09 07:59
【摘要】九年級數(shù)學(xué)(下)第二章二次函數(shù)6.何時獲得最大利潤(1)二次函數(shù)的應(yīng)用陽泉市義井中學(xué)高鐵牛?請你幫助分析:銷售單價是多少時,可以獲利最多?何時獲得最大利潤?某商店經(jīng)營T恤衫,已知成批購進時單價是.根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在某一時間內(nèi),單價是,銷售量是500件,而單價每降低1
2024-11-26 18:08
【摘要】課程標準浙教版實驗教科書九年級上冊請用適當?shù)暮瘮?shù)解析式表示下列問題情境中的兩個變量y與X之間的關(guān)系·(1)圓的面積y()與圓的半徑x(cm)2cmy=πx2(2)王先生存入銀行2萬元,先存一個一年定期,一年后銀行將本息自動轉(zhuǎn)存為又一個一年定期,設(shè)一年定期的年
2024-12-17 23:42
【摘要】第一篇:二次函數(shù)的應(yīng)用教案 (第一課時) 教學(xué)目標 知 識 與 技 能 通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點與最值的關(guān)系,會求解最值問題。過 ...
2024-10-24 19:26
【摘要】第一篇:二次函數(shù)的應(yīng)用 §二次函數(shù)的應(yīng)用(2) 教學(xué)目標: 了解數(shù)學(xué)的應(yīng)用價值,掌握實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.教學(xué)重點:是應(yīng)用二次函數(shù)解...
2024-10-21 15:14
【摘要】函數(shù)開口方向?qū)ΨQ軸頂點坐標y=ax2(a0)y=ax2+k(a0)y=ax2(a0)y=ax2+k(a0)向上向上向下向下y軸y軸y軸y軸(0、0)(0、0)(0、k)(0、k)函數(shù)開
2024-12-28 10:11
【摘要】二次函數(shù)應(yīng)用(一)復(fù)習(xí)十一復(fù)習(xí)目標:通過復(fù)習(xí)進一步理解并掌握二次函數(shù)有關(guān)性質(zhì),提高對二次函數(shù)綜合題的分析和解答的能力.y=x2-2kx+k-1.⑴求證:不論k取何值時,拋物線與x軸必有兩個交點.⑵設(shè)拋物線與x軸的兩個交點分別為(x1,0),(x2,0),求x12+x22的最小值.x2-(2k-
2024-12-09 12:03
【摘要】【知識要點】運用二次函數(shù)求實際問題中的最大值或最小值,首先用應(yīng)當求出函數(shù)解析式和自變量的取值范圍,求得的最大值或最小值對用的字變量的值必須在自變量的取值范圍內(nèi)]課內(nèi)同步精練●A組基礎(chǔ)練習(xí)1.二次函數(shù)y=x2-3x-4的頂點坐標是,對稱軸是直線,與x軸的交點是,當
2024-12-05 12:36
【摘要】二次函數(shù)的復(fù)習(xí)應(yīng)用------最值問題福州第十五中學(xué)蔡建民2020年05月22日一、復(fù)習(xí):在下列各范圍內(nèi)求函數(shù)的最值:(1)x為全體實數(shù)(2)1≤x≤2(3)-2≤x≤2322???xxyO-2
2024-10-19 15:47
【摘要】北師大版九年級下冊數(shù)學(xué)20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標為(-2a244acba?①當a0時,y有最小值=②當a0時,y有最大值=244acba?二次函數(shù)的最值求法情境導(dǎo)入
2025-07-02 13:01
【摘要】北師大版九年級下冊數(shù)學(xué)情境導(dǎo)入某超市有一種商品,進價為2元,據(jù)市場調(diào)查,銷售單價是13元時,平均每天銷售量是50件,而銷售價每降低1元,平均每天就可以多售出10件.若設(shè)降價后售價為x元,每天利潤為y元,則y與x之間的函數(shù)關(guān)系是怎樣的?本節(jié)目標T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型
2025-06-27 01:19
【摘要】義務(wù)教育課程標準實驗教科書SHUXUE九年級下擲鉛球時,鉛球在空中經(jīng)過的路線是拋物線,已知某運動員擲鉛球時,鉛球在空中經(jīng)過的拋物線的解析式為:21914020yxx????其中x是鉛球離初始位置的水平距離,y是鉛球離地面的高度,如圖你能求出鉛球被扔出多遠嗎?鉛球的著地點A的縱坐標y=0,橫坐標x就是鉛球
2024-12-28 08:58
【摘要】課程標準浙教版實驗教科書九年級上冊知識回顧:時,圖象將發(fā)生怎樣的變化?二次函數(shù)y=ax2y=a(x+m)2y=a(x+m)2+k1、頂點坐標?(0,0)(–m,0)(–m,k)2、對稱軸?y軸(直線x=0)(直線x=–m)(直線x=–m)
2024-12-28 13:29