【摘要】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABCABC三角形的外接圓在實際中很有用,但還有用它不能解決的問題.如ABCM已知:△ABC(如圖)求作:和△ABC的各邊都相切的圓作法:1.作∠ABC、∠A
2024-12-20 05:27
【摘要】三角形的內(nèi)切圓高臺縣二中張維忠如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關(guān)鍵是什么?問
2024-11-27 02:32
【摘要】例:如圖為△ABC的內(nèi)切圓,點D,E分別為邊AB,AC上的點,且DE為⊙I的切線,若△ABC的周長為21,BC邊的長為6,則△ADE的周長為( B?。.15B.9C.D.7如圖,在△ABC中,AB=10,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tan∠ODA= 2 .如圖,O是△ABC的內(nèi)心,過點O作
2025-08-09 00:01
【摘要】第七章圓第九節(jié)三角形的內(nèi)切圓(一)提出問題如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關(guān)鍵是什么?提出以下幾個問題進行討論:(2)
2024-12-08 15:50
【摘要】三角形外接圓半徑的求法及應(yīng)用方法一:R=ab/(2h)三角形外接圓的直徑等于兩邊的乘積除以第三邊上的高所得的商。AD是△ABC的高,AE是△ABC的外接圓直徑.求證AB·AC=AE·AD.證:連接AO并延長交圓于點E,連接BE,則∠ABE=90°.∵∠E=∠C,∠ABE=∠ADC=90°
2024-08-24 00:14
【摘要】·思考:如圖為一張三角形鐵皮,如何在它上面截一個面積最大的圓形鐵皮?O動手操作·O三角形內(nèi)切圓
2024-12-18 01:36
【摘要】1、確定圓的條件是什么?2、敘述角平線的性質(zhì)與判定性質(zhì):角平線上的點到這個角的兩邊的距離相等。判定:到這個角的兩邊距離相等的點在這個角的平分線上。3、下圖中△ABC與圓O的關(guān)系?△ABC是圓O的內(nèi)接三角形;圓O是△ABC的外接圓圓心O點叫△ABC的外心ACBO李明在
2024-12-27 15:17
【摘要】北師版九年級下冊第3課時三角形的內(nèi)切圓如圖是一張三角形的鐵皮,工人師傅要從中截下一塊圓形的用料,怎樣才能使截下的圓的面積盡可能大呢?新課導(dǎo)入ABC第二種情況ABC第四種情況第一種情況ABC猜測ABC第三種情況問題:在這塊三角形鐵皮上還能截下更大的
2025-03-22 15:23
【摘要】三角形的內(nèi)切圓如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關(guān)鍵是什么?問題2:怎樣確定圓心的位置?問題
2024-12-09 06:23
【摘要】提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓:使它和已知三角形的各邊都相切已知:△ABC求作:和△ABC的各邊都相切的圓ABCOMNDO就是所求的圓。作法:1、作∠B,∠C的平分線BM和CN,交點為O2、過點O作OD
【摘要】12如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC3·O,在圓O上任取一點A,過點A畫圓O的切線PO2、如圖,D、E、F在圓O上,分別過點D、E、F作圓O的切線。3條切線兩兩相交于點A、B、C·ODE
【摘要】確定圓的條件是什么?角平分線的定義、性質(zhì)和判定都是什么?由于不共線三點確定一個圓,因此每一個三角形都有且只有一個外接圓,圓心是三邊垂直平分線的交點,叫做三角形的外心.外心到三角形三個頂點的距離相等。三角形的外心可能在三角形內(nèi)(銳角三角形),可能在三角形的一邊上(直角三角形的外心是斜邊的中點),可能在三角形外面(鈍角三角形).
【摘要】三角形的內(nèi)切圓同步練習(xí)◆基礎(chǔ)訓(xùn)練1.如圖1,⊙O內(nèi)切于△ABC,切點為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-12-05 19:40
【摘要】與三角形的內(nèi)切圓有關(guān)的幾個結(jié)論鄭建元(浙江省余姚市實驗學(xué)?!?15400)三角形與其內(nèi)切圓是直線與圓位置關(guān)系的重要內(nèi)容,運用切線、面積等知識可得到一些重要的結(jié)論,特別是當(dāng)三角形是直角三角形時,結(jié)論尤為豐富.如果我們平時解題的時候,不滿足于就題論題,而是向更深的層次去探究題目的內(nèi)在規(guī)律.這樣不僅可以培養(yǎng)創(chuàng)造思維能力,而且可以免受題海之困擾,從而大大提高學(xué)習(xí)效率.例1如圖
2025-07-09 00:28
【摘要】三角形的外接圓和內(nèi)切圓三角形的外接圓和內(nèi)切圓教學(xué)目標(biāo)1、能回憶起三角形的外接圓及外心,內(nèi)切圓及內(nèi)心。2、會畫出已知三角形的外接圓和內(nèi)切圓。3、運用有關(guān)知識解決有關(guān)問題。重點:外接圓及內(nèi)切圓的畫法;外心和內(nèi)心。難點:知識的綜合運用。1、什么是三角形的外接圓與內(nèi)切圓?2、如何畫出一個三角形的外接圓與內(nèi)切圓?