【正文】
(4)滑塊端隙 滑塊端隙系指滑塊端面與鎖環(huán)缺口端面之間的間隙,如圖66所示,同時,嚙合套端面與鎖環(huán)端面的間隙為,要求。為保證b0,應(yīng)使,通常取=[15]。預(yù)留后備行程的原因是鎖環(huán)的摩擦面會因摩擦而磨損,并在接下來的換擋時,鎖環(huán)要向齒輪方向增加少量移動。而此刻,若鎖環(huán)上的摩擦錐面還未達到許用磨損的范圍,同步器也會因失去摩擦力矩而不能實現(xiàn)鎖環(huán)等零件與齒輪同步后換擋,故屬于因設(shè)計不當(dāng)而影響同步器壽命。在空擋位置,~。變速器是車輛不可缺少的一部分,其中機械式變速箱設(shè)計發(fā)展到今天,其技術(shù)已經(jīng)成熟,但對于我們即將踏出校門的學(xué)生來說,其中的設(shè)計理念還是很值得我們?nèi)ヌ接懞蛯W(xué)習(xí)的。在設(shè)計中采用了五檔手動變速器,通過較大的變速器傳動比變化范圍,可以滿足汽車在不同的工況下的要求,從而達到其經(jīng)濟性和動力性的要求;變速器掛檔時用結(jié)合套,雖然增加了成本,但是使汽車變速器操縱舒適度增加,齒輪傳動更平穩(wěn)。但是,在以后的工作和學(xué)習(xí)中,我會繼續(xù)學(xué)習(xí)和研究變速器技術(shù),以求設(shè)計更加合理和經(jīng)濟。畢業(yè)設(shè)計不僅使我學(xué)習(xí)和鞏固了專業(yè)課知識而且了解了不少相關(guān)專業(yè)的知識,個人能力得到很大提高。參考文獻[1] [M].北京:清華大學(xué)出版社,2001[2] [M].北京:機械工業(yè)出版社,2000[3] [M].沈陽:東北大學(xué)出版社 2003[4] [M].上海:上??茖W(xué)技術(shù)出版社 2003[5] [M].,1997[6] [M].:人民交通出版社,2001[7] 清華大學(xué) [M].:機械工業(yè)出版社,1998[8] 鐘建國 廖耘 [M].長沙:中南大學(xué)出版社,2002[9] 肖盛云 [M].重慶:重慶大學(xué)出版社,1997[10] 梁治明. 材料力學(xué)[M]. 遼寧:高等教育出版社出版,1985.[11] The Motor Vehicle Newton Steeda,Garrett,1962[12] 陳家瑞 汽車構(gòu)造(下冊) 第2版 機械工業(yè)出版社 2000.(08)[13] Bostwick C C,Szadkowski Vibrations DuringEngagements of Dry Friction Clutches[R].SAE Technical Paper,982846:689~701 [14] Adolf Goetzberger, Christopher materials,past,present,future. Solar Energy Materialsamp。這種造型方法提供給用戶們的是一種無限的,柔順的,沒有固定控制的曲面,從而取代了那種固定的網(wǎng)狀控制點。這些復(fù)雜的曲面形狀也許會因為增加更多的控制點和曲面而變得沒有明顯的界限。我們解決導(dǎo)致強迫變形的最優(yōu)化問題的方法停留在一個允許不一致的B型活動曲線規(guī)曲面細分曲面描寫上。高效的數(shù)字化表示會在公式和描述問題上的線性開發(fā)中獲得。一般來說,這個目標(biāo)的追尋已經(jīng)由一種尋找“正確”的曲面描述所構(gòu)成,對于用戶來說,他們的自由程度是足以控制指揮操作的。這種控制嚙合處理出現(xiàn)在大型的測量上,因為曲面控制點轉(zhuǎn)移的響應(yīng)是直觀的:拉或推一個控制點會造成那些本來能輕易地通過良好的相互影響位置的確定來控制的形狀,發(fā)生一個局部撞擊或凹陷。舉例來說,盡管幾乎任何用控制嚙合面方法的人都有試著去做一個概念化的簡單變化的失敗經(jīng)驗,但是最后他們強迫去精確地復(fù)位許多甚至是全部圖形,通過控制點去實現(xiàn)所希望的外形。我們想象著提供給用戶的造型是一塊無限的柔性片狀光滑曲面它本身沒有固定的控制或構(gòu)造,按它的復(fù)雜性和能力性決定細節(jié)方面也沒有前端限制。附錄 外文文獻Variational Surface modelingWe present a new approach to interactive modeling of freefrom surfaces. Instead of a fixed mesh of control points, the model presented to the user is that of an infinitely malleable surface, with no fixed controls. The user is free to apply control points and curves which are then available as handles for direct manipulation. The plexity of the surface’s shape may be increased by adding more control points and curves, without apparent limit. Within the constraints imposed by the controls, the shape of the surface is fully determined by one or more simple criteria, such as smoothness. Our method for solving the resulting constrained variational optimization problem rests on surface representation scheme allowing nonuniform subdivision of Bspline surfaces. Automatic subdivision is used to ensure that constraints are met, and to enforce error bounds. Efficient numerical solutions are obtained by exploiting linearities in the problem formulation and the representation. The most basic goal for interactive freeform surface design is to make it easy for the user to control the shape of the surface. Traditionally, the pursuit of this goal has taken the form of a search for the “right” surface representation, one whose degrees of freedom suffice as controls for direct manipulation by the user. The dominant approach to surface modeling, using a control mesh to manipulate a Bspline or other tensor product surface, clearly reflects this outlook.The control mesh approach is appealing in large measure because the surface’s response to control point displacements is intuitive: pulling or pushing a control point makes a local bump or dent whose shape is quite easily controlled by fine interactive positioning. Unfortunately, local bumps and dents are not the only features one wants to create. For example, almost anyone who has used a control mesh interface has had the frustrating experience of trying to make a conceptually simple change, but being forced in the end to precisely reposition many—even all—the control points to achieve the desired effect.The work we will describe in this paper represents an effort to escape this kind of inflexibility by severing the tie between the controls and the representation. The model we envision presenting to the user is that of an infinitely malleable piecewise smooth surface, with no fixed controls or structure of its own, and with no prior limit on its plexity or ability to resolve detail. To this surface, the user may freely attach a variety of features, such as points and flexible curves, which then serve as handles for direct interactive manipulation of th