【摘要】........解析幾何中的定點(diǎn)定值問題考綱解讀:定點(diǎn)定值問題是解析幾何解答題的考查重點(diǎn)。此類問題定中有動(dòng),動(dòng)中有定,并且常與軌跡問題,曲線系問題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識(shí)??疾閿?shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方
2025-04-09 07:47
【摘要】........解析幾何中的定值定點(diǎn)問題(一)一、定點(diǎn)問題【例1】.已知橢圓:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
【摘要】WORD資料可編輯專題08解鎖圓錐曲線中的定點(diǎn)與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案】(1
2025-05-02 12:58
【摘要】......專題08解鎖圓錐曲線中的定點(diǎn)與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定
2025-05-02 13:05
【摘要】解析幾何中的定點(diǎn)和定值問題【教學(xué)目標(biāo)】學(xué)會(huì)合理選擇參數(shù)(坐標(biāo)、斜率等)表示動(dòng)態(tài)圖形中的幾何對(duì)象,探究、證明其不變性質(zhì)(定點(diǎn)、定值等),體會(huì)“設(shè)而不求”、“整體代換”在簡(jiǎn)化運(yùn)算中的作用.【教學(xué)難、重點(diǎn)】解題思路的優(yōu)化.【教學(xué)方法】討論式【教學(xué)過程】一、基礎(chǔ)練習(xí)1、過直線上動(dòng)點(diǎn)作圓的切線,則兩切點(diǎn)所在直線恒過一定點(diǎn).此定點(diǎn)的坐標(biāo)為_________.【答案】【解
2025-07-03 18:55
【摘要】WORD資料可編輯課題名稱:《圓錐曲線中的定點(diǎn)與定值問題》教學(xué)內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識(shí)交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點(diǎn)、定值問題與運(yùn)動(dòng)變化密切相關(guān),這類問題常與函數(shù),不等式,向量等其他章節(jié)知識(shí)綜合,是學(xué)習(xí)圓錐曲
2025-04-09 00:03
【摘要】......破解橢圓中最值問題的常見策略浬浦中學(xué)蔡明有關(guān)圓錐曲線的最值問題,在近幾年的高考試卷中頻頻出現(xiàn),在各種題型中均有考查,其中以解答題為重,在平時(shí)的高考復(fù)習(xí)需有所重視。圓錐曲線最值問題具有綜合性強(qiáng)、涉及知識(shí)面廣而且常含有變量的一類難題,也是教學(xué)中的一個(gè)難點(diǎn)。要解決這類問題往往利用函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸等數(shù)
2025-04-09 06:36
【摘要】相關(guān)知識(shí)點(diǎn):含義含有可變參數(shù)的曲線系所經(jīng)過的點(diǎn)中不隨參數(shù)變化的某個(gè)點(diǎn)或某幾個(gè)點(diǎn)定點(diǎn)解法把曲線系方程按照參數(shù)進(jìn)行集項(xiàng),使得方程對(duì)任意參數(shù)恒成立的方程組的解即為曲線系恒過的定點(diǎn)含義不隨其他量的變化而發(fā)生數(shù)值變化的量定值解法建立這個(gè)量關(guān)于其他量的關(guān)系式,最后的結(jié)果與其他變化的量無(wú)關(guān)定點(diǎn)問
2024-08-24 03:30
【摘要】.,....課題名稱:《圓錐曲線中的定點(diǎn)與定值問題》教學(xué)內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識(shí)交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點(diǎn)、定值問題與運(yùn)動(dòng)變化密切相關(guān),這類問題常與函數(shù),不等式,向量等其他章節(jié)知識(shí)綜合
【摘要】........專題08解鎖圓錐曲線中的定點(diǎn)與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案
2025-05-02 12:52
【摘要】完美WORD格式專題08解鎖圓錐曲線中的定點(diǎn)與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案】(1)(2)【解析】試題分析:(Ⅰ)設(shè)圓過橢圓的上、下、
2024-08-24 19:26
【摘要】圓錐曲線專題——定點(diǎn)、定值問題定點(diǎn)問題是常見的出題形式,化解這類問題的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過定點(diǎn)問題通法,是設(shè)出直線方程,通過韋達(dá)定理和已知條件找出k和m的一次函數(shù)關(guān)系式,代入直線方程即可。技巧在于:設(shè)哪一條直線?如何轉(zhuǎn)化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質(zhì),這些性質(zhì)往往成為出題老師
2024-08-24 05:10
【摘要】專題08解鎖圓錐曲線中的定點(diǎn)與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點(diǎn)分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點(diǎn),使得為定值;并求出該定點(diǎn)的坐標(biāo).【答案】(1)(2)【解析】試題分析:(Ⅰ)設(shè)圓過橢圓的上、下、右三個(gè)頂點(diǎn),可求得,再根據(jù)橢圓的離心率求得,可得橢圓的方程;(Ⅱ)設(shè)直線的方程為,
2025-05-02 12:43
【摘要】破解橢圓中最值問題的常見策略浬浦中學(xué)蔡明有關(guān)圓錐曲線的最值問題,在近幾年的高考試卷中頻頻出現(xiàn),在各種題型中均有考查,其中以解答題為重,在平時(shí)的高考復(fù)習(xí)需有所重視。圓錐曲線最值問題具有綜合性強(qiáng)、涉及知識(shí)面廣而且常含有變量的一類難題,也是教學(xué)中的一個(gè)難點(diǎn)。要解決這類問題往往利用函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸等數(shù)學(xué)思想方
2024-09-24 13:09
【摘要】圓中的最值問題【考題展示】題1(2012年武漢中考)在坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B為y軸正半軸上的一點(diǎn),點(diǎn)C是第一象限內(nèi)一點(diǎn),且AC=2.設(shè)tan∠BOC=m,則m的取值范圍是_________.題2(2013年武漢元調(diào))如圖,在邊長(zhǎng)為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長(zhǎng)為半徑作⊙O,C為半圓弧上的一個(gè)動(dòng)點(diǎn)(不與A、B兩點(diǎn)重合),射線AC交
2025-04-09 00:00