【摘要】第一篇: (3課時(shí)) (一)教學(xué)目標(biāo) :從實(shí)際問(wèn)題中建立一元二次不等式,解一元二次不等式;應(yīng)用一元二次不等式解決日常生活中的實(shí)際問(wèn)題;能用一個(gè)程序框圖把求解一般一元二次不等式的過(guò)程表示出來(lái); ...
2024-10-20 18:25
【摘要】一元二次不等式及其解法練習(xí)班級(jí):姓名:座號(hào):1比較大?。海?);(2);(3);(4)當(dāng)時(shí),_______.2.用不等號(hào)“”或“”填空:(1);(2);(3);(4).3.已知,則一定成立的不等式是(
2025-04-08 05:31
【摘要】方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象不等式的解集ax2+bx+c>0ax2+bx+c<0a>0xyox1x2xox0yxoy當(dāng)⊿>0時(shí),方程有兩不等的根:x1,
2024-11-01 03:35
【摘要】一元二次不等式及其解法考察下面含未知數(shù)x的不等式:15x2+30x-10和3x2+6x-1≤0.這兩個(gè)不等式有兩個(gè)共同特點(diǎn):(1)含有一個(gè)未知數(shù)x;(2)未知數(shù)的最高次數(shù)為2.一般地,含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的整式不等式
2024-09-04 02:12
【摘要】第一講不等式解法一、含絕對(duì)值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來(lái)求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號(hào)各端加2,得-2x6。∴不等式解集是{x|-2
2025-07-04 08:38
【摘要】一元二次不等式的解法教學(xué)設(shè)計(jì)方案教學(xué)目標(biāo)(1)掌握一元二次不等式的解法;(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;(3)了解簡(jiǎn)單的分式不等式的解法;(4)能利用二次函數(shù)與一元二次方程來(lái)求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;(5)能夠進(jìn)行較簡(jiǎn)單的分類討論,借助于數(shù)軸的直觀,求解簡(jiǎn)單的含字母的一元二次不等式;(6)通過(guò)利用二次函數(shù)的圖象來(lái)求解一元二次
2025-05-01 12:45
【摘要】 《一元二次不等式的解法》說(shuō)課稿 ?。? 。 概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,...
2024-12-03 00:43
【摘要】1一元二次不等式及其解法導(dǎo)學(xué)案一、學(xué)習(xí)目標(biāo)理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;二、本節(jié)重點(diǎn)難點(diǎn)熟練掌握一元二次不等式的解法問(wèn)題1:請(qǐng)同學(xué)們畫(huà)出一次函數(shù)72??xy的圖象,從圖象上觀察y=0,y&
2024-12-11 22:11
【摘要】【教學(xué)目標(biāo)】1.知識(shí)與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過(guò)程與方法:經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程和通過(guò)函數(shù)圖象探究一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系,獲得一元二次不等式的解法;3.情態(tài)與價(jià)值:激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)勇于探
2025-05-02 01:17
【摘要】一元二次不等式的解法(一)安邊中學(xué)鄒英一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系,通過(guò)觀察一次函數(shù)的圖像求得一元一次不等式的解集.一、復(fù)習(xí)引入考察:對(duì)一次函數(shù)y=2x-6,當(dāng)x為何值時(shí),y=0,即2x-6=0當(dāng)x為何值時(shí),y0
2024-12-12 02:57
【摘要】-不等式的性質(zhì)及一元二次不等式的解法一、不等關(guān)系與不等式1、不等式的定義:用不等號(hào)(“≤”,“≥”,“<”,“>”,“≠”)表示不等關(guān)系的式子。用“<”,“>”連接的不等式叫嚴(yán)格不等式,用“≤”,“≥”連接的不等式叫非嚴(yán)格不等式。2、實(shí)數(shù)的特征和實(shí)數(shù)大小的比較(1)、特征:(1)任意實(shí)數(shù)的平方不小于0:即:∈R,則2≥0;(2)任意兩個(gè)實(shí)數(shù)都可以比較大小。3、實(shí)數(shù)比較
2025-05-01 12:51
【摘要】第一篇:(一元二次不等式的概念和一元二次不等式解法) 或 一元二次不等式及其解法 一元二次不等式的概念和一元二次不等式解法 從容說(shuō)課 ,第一個(gè)學(xué)時(shí)先由師生共同分析日常生活中的實(shí)際問(wèn)題來(lái)...
2024-10-20 19:24
【摘要】課時(shí)作業(yè)16 一元二次不等式及其解法時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.不等式x2-5x+6≤0的解集為( )A.[2,3] B.[2,3)C.(2,3) D.(2,3]【答案】 A【解析】 因?yàn)榉匠蘹2-5x+6=0的解為x=2或x=3,所以不等式的解集為{x|2≤x≤3}.2.若a2-a+10,則不等式x2+ax+1>
2025-07-08 20:16
【摘要】含參一元二次不等式的解法溫縣第一高級(jí)中學(xué)數(shù)學(xué)組任利民解含參一元二次不等式,常涉及對(duì)參數(shù)的分類討論以確定不等式的解,:①比較兩根大??;②判別式的符號(hào);③.一、根據(jù)二次不等式所對(duì)應(yīng)方程的根的大小分類例1解關(guān)于的不等式.分析:原不等式等價(jià)于,所對(duì)應(yīng)方程的兩根是,.解:原不等式等價(jià)于,所對(duì)應(yīng)方程的兩根是或.當(dāng)時(shí),有,所以不等式的解集為或.當(dāng)時(shí),有,所
2025-07-10 16:54
【摘要】思想方法選講之二分類討論與含參數(shù)的一元二次不等式基礎(chǔ)知識(shí)預(yù)備:解下列一元二次不等式(1)x2-6x+80(2)(x+5)(3-2x)≥6(3)1+2x+x2≤0(4)(5)(6)1+2x+x2≥0(7)(x2-x-6)(1—x2)≤0
2025-07-11 08:12