freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)知識點總結(jié)精華-閱讀頁

2025-04-07 12:50本頁面
  

【正文】 y=arctanx,它的定義域是(-∞,+∞),值域是.函數(shù)y=ctgx,[x∈(0,π)]的反函數(shù)叫做反余切函數(shù),記作y=arcctgx,它的定義域是(-∞,+∞),值域是(0,π).II. 競賽知識要點一、反三角函數(shù).1. 反三角函數(shù):⑴反正弦函數(shù)是奇函數(shù),故,(一定要注明定義域,若,沒有與一一對應(yīng),故無反函數(shù))注:,.⑵反余弦函數(shù)非奇非偶,但有,.注:①,.②是偶函數(shù),非奇非偶,而和為奇函數(shù).⑶反正切函數(shù):,定義域,值域(),是奇函數(shù),.注:,.⑷反余切函數(shù):,定義域,值域(),是非奇非偶.,.注:①,.②與互為奇函數(shù),同理為奇而與非奇非偶但滿足.⑵ 正弦、余弦、正切、余切函數(shù)的解集:的取值范圍 解集 的取值范圍 解集①的解集 ②的解集>1 >1 =1 =1 <1 <1 ③的解集: ③的解集:二、三角恒等式.組一組二組三 三角函數(shù)不等式<< 在上是減函數(shù)若,則高中數(shù)學(xué)第五章平面向量考試內(nèi)容:數(shù)學(xué)探索169。:數(shù)學(xué)探索169。(2)掌握向量的加法和減法.數(shù)學(xué)探索169。(4)了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算.數(shù)學(xué)探索169。(6)掌握平面兩點間的距離公式,以及線段的定比分點和中點坐標公式,并且能熟練運用掌握平移公式.167。0時, 異向。b=Ox1x2+y1y2=O.(4)線段的定比分點公式設(shè)點P分有向線段所成的比為λ,即=λ,則=+ (線段的定比分點的向量公式) (線段定比分點的坐標公式)當λ=1時,得中點公式:=(+)或 (5)平移公式設(shè)點P(x,y)按向量a=(h,k)平移后得到點P′(x′,y′),則=+a或曲線y=f(x)按向量a=(h,k)平移后所得的曲線的函數(shù)解析式為:y-k=f(x-h)(6)正、余弦定理正弦定理:余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.(7)三角形面積計算公式:設(shè)△ABC的三邊為a,b,c,其高分別為ha,hb,hc,半周長為P,外接圓、內(nèi)切圓的半徑為R,r.①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R④S△=1/2sinCsinB=1/2cb:數(shù)學(xué)探索169。(2)掌握兩個(不擴展到三個)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用.數(shù)學(xué)探索169。(4)掌握簡單不等式的解法.數(shù)學(xué)探索169。167。直線方程的點斜式和兩點式.直線方程的一般式.數(shù)學(xué)探索169。.簡單的線性規(guī)劃問題.數(shù)學(xué)探索169。.圓的參數(shù)方程.數(shù)學(xué)探索169。(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程.數(shù)學(xué)探索169。(3)了解二元一次不等式表示平面區(qū)域.數(shù)學(xué)探索169。(5)了解解析幾何的基本思想,了解坐標法.數(shù)學(xué)探索169。理解圓的參數(shù)方程.167。08. 圓錐曲線方程 知識要點一、橢圓方程.1. 橢圓方程的第一定義:⑴①橢圓的標準方程:i. 中心在原點,焦點在x軸上:. ii. 中心在原點,焦點在軸上:. ②一般方程:.③橢圓的標準參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).⑵①頂點:或.②軸:對稱軸:x軸,軸;長軸長,短軸長.③焦點:或.④焦距:.⑤準線:或.⑥離心率:.⑦焦點半徑:i. 設(shè)為橢圓上的一點,為左、右焦點,則由橢圓方程的第二定義可以推出.,為上、下焦點,則由橢圓方程的第二定義可以推出.由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓. ⑧通徑::和⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.⑸若P是橢圓:,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.二、雙曲線方程.1. 雙曲線的第一定義:⑴①雙曲線標準方程:. 一般方程:.⑵①i. 焦點在x軸上: 頂點: 焦點: 準線方程 漸近線方程:或ii. 焦點在軸上:頂點:. 焦點:. 準線方程:. 漸近線方程:或,參數(shù)方程:或 .②軸為對稱軸,實軸長為2a, 虛軸長為2b,焦距2c. ③離心率. ④準線距(兩準線的距離);通徑. ⑤參數(shù)關(guān)系. ⑥焦點半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點或分別為雙曲線的上下焦點) “長加短減”原則: 構(gòu)成滿足 (與橢圓焦半徑不同,橢圓焦半徑要帶符號計算,而雙曲線不帶符號) ⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.⑷共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,它們具有共同的漸近線:.⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.⑹直線與雙曲線的位置關(guān)系:區(qū)域①:無切線,2條與漸近線平行的直線,合計2條;區(qū)域②:即定點在雙曲線上,1條切線,2條與漸近線平行的直線,合計3條;區(qū)域③:2條切線,2條與漸近線平行的直線,合計4條;區(qū)域④:即定點在漸近線上且非原點,1條切線,1條與漸近線平行的直線,合計2條;區(qū)域⑤:即過原點,無切線,無與漸近線平行的直線.小結(jié):過定點作直線與雙曲線有且僅有一個交點,可以作出的直線數(shù)目可能有0、4條.(2)若直線與雙曲線一支有交點,交點為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.⑺若P在雙曲線,則常用結(jié)論1:P到焦點的距離為m = n,則P到兩準線的距離比為m︰n. 簡證: = .常用結(jié)論2:從雙曲線一個焦點到另一條漸近線的距離等于b.三、拋物線方程.3. 設(shè),拋物線的標準方程、類型及其幾何性質(zhì):圖形焦點準線范圍對稱軸軸軸頂點 (0,0)離心率焦點注:①頂點.②則焦點半徑。x163。y163。 a,y206。0中心原點O(0,0)原點O(0,0)頂點(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸。x焦半徑通徑2p焦參數(shù)P1. 橢圓、雙曲線、拋物線的標準方程的其他形式及相應(yīng)性質(zhì).2. 等軸雙曲線3. 共軛雙曲線5. 方程y2=ax與x2=ay的焦點坐標及準線方程..高中數(shù)學(xué)第九章立體幾何考試內(nèi)容平面及其基本性質(zhì).平面圖形直觀圖的畫法.數(shù)學(xué)探索169。.直線和平面垂直的判定與性質(zhì).點到平面的距離.斜線在平面上的射影.直線和平面所成的角.三垂線定理及其逆定理.數(shù)學(xué)探索169。.正多面體.棱柱.棱錐.球.數(shù)學(xué)探索169。(1)掌握平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖。(2)掌握兩條直線平行與垂直的判定定理和性質(zhì)定理,掌握兩條直線所成的角和距離的概念,對于異面直線的距離,只要求會計算已給出公垂線時的距離.數(shù)學(xué)探索169。(4)掌握兩個平面平行的判定定理和性質(zhì)定理,掌握二面角、二面角的平面角、兩個平行平面間的距離的概念,掌握兩個平面垂直的判定定理和性質(zhì)定理.數(shù)學(xué)探索169。(6)了解多面體、凸多面體的概念,了解正多面體的概念.數(shù)學(xué)探索169。(8)了解棱錐的概念,掌握正棱錐的性質(zhì),會畫正棱錐的直觀圖.數(shù)學(xué)探索169。(B).直線、平面、簡單幾何體:數(shù)學(xué)探索169。.數(shù)學(xué)探索169。.數(shù)學(xué)探索169。.異面直線所成的角.異面直線的公垂線.異面直線的距離.數(shù)學(xué)探索169。.平行平面間的距離.二面角及其平面角.兩個平面垂直的判定和性質(zhì).數(shù)學(xué)探索169。:數(shù)學(xué)探索169。會用斜二測的畫法畫水平放置的平面圖形的直觀圖:能夠畫出空間兩條直線、.數(shù)學(xué)探索169。(3)理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.數(shù)學(xué)探索169。(5)掌握空間向量的數(shù)量積的定義及其性質(zhì):掌握用直角坐標計算空間向量數(shù)量積的公式;掌握空間兩點間距離公式.數(shù)學(xué)探索169。(7)掌握直線和直線、直線和平面、平面和平面所成的角、只要求會計算已給出公垂線或在坐標表示下的距離掌握直線和平面垂直的性質(zhì)定理掌握兩個平面平行、垂直的判定定理和性質(zhì)定理.數(shù)學(xué)探索169。了解正多面體的概念.數(shù)學(xué)探索169。(10)了解棱錐的概念,掌握正棱錐的性質(zhì)。(11)、體積公式.數(shù)學(xué)探索169。167。則為正方形.3. 球:⑴球的截面是一個圓面.①球的表面積公式:.②球的體積公式:.⑵緯度、經(jīng)度:①緯度:地球上一點的緯度是指經(jīng)過點的球半徑與赤道面所成的角的度數(shù).②經(jīng)度:地球上兩點的經(jīng)度差,是指分別經(jīng)過這兩點的經(jīng)線與地軸所確定的二個半平面的
點擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1