【摘要】贏在單詞,一氣“H”成英語講師高繼英短語...happentosb...……發(fā)生在某人身上happentodosth.碰巧要做某事辨析takeplace發(fā)生,舉行occurto……同根詞happy/happiness/perhaps考例:Idon’tknowwhether
2024-08-24 19:58
【摘要】1第初等變換與初等矩陣2一、矩陣的初等變換二、初等矩陣三、用初等變換法求可逆矩陣的逆矩陣主要內(nèi)容:四、思考與練習(xí)3一、矩陣的初等變換線性方程組的一般形式???????????????????mnmnmmnnnnbxaxaxabxaxaxab
2025-02-03 14:34
【摘要】第一章向量與矩陣的基本運算2§1向量與矩陣的定義及運算1212(,,1,)(1,2,,).nninninaaaaaaain????????????????由個數(shù)構(gòu)成的有序數(shù)組,記作=
2024-11-03 00:34
【摘要】《線性代數(shù)》下頁結(jié)束返回第二章矩陣§1矩陣的概念§2矩陣的線性運算、乘法和轉(zhuǎn)置運算下頁《線性代數(shù)》下頁結(jié)束返回第二章矩陣本章要求1.掌握矩陣的運算,了解方陣的冪、方陣乘積的行列式;2.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)及
2025-06-04 00:58
【摘要】1建筑學(xué)專業(yè)“十一五”專業(yè)建設(shè)發(fā)展規(guī)劃一、專業(yè)現(xiàn)狀及存在問題分析(一)專業(yè)總體現(xiàn)狀我校建筑學(xué)專業(yè)自創(chuàng)辦迄今已有七十余年的辦學(xué)歷史,經(jīng)過長時間積淀,已成為全國最優(yōu)秀的建筑學(xué)院專業(yè)之一.1994年,本專業(yè)以優(yōu)秀級首批通過全國高等學(xué)校建筑學(xué)院專業(yè)教育評估。2020年,本專業(yè)以優(yōu)秀級再次通過復(fù)評,成為國際承認學(xué)位的少數(shù)
2024-11-28 01:12
【摘要】一、矩陣的分塊對于行數(shù)和列數(shù)較高的矩陣,為了簡化運算,經(jīng)常采用分塊法,使大矩陣的運算化成小矩陣的運算.具體做法是:將矩陣用若干條縱線和橫線分成許多個小矩陣,每一個小矩陣稱為的子塊,以子塊為元素的形式上的矩陣稱為分塊矩陣.AAA,321???????
【摘要】常用記號一?用R表示實數(shù)域,用C表示復(fù)數(shù)域。?Rn表示n維實向量集合;?Cn表示n維復(fù)向量集合;?表示實矩陣集合;?表示復(fù)矩陣集合;nmR?nmC?nm?nm?})(,{};)(,{rArankCACr
2025-02-03 22:49
【摘要】第五節(jié)矩陣的初等變換及初等矩陣定義1下面三種變換稱為矩陣的初等行變換:??);記作兩行對調(diào)兩行(對調(diào)jirrji?,,1??;02乘以某一行的所有元素以數(shù)?k)記作行乘(第krkii?,??.3)記作行上倍加到第行的對應(yīng)的元素上去(第倍加到另一行把某一行所有元素的jikrrikjk
2024-10-29 17:21
【摘要】§逆矩陣b1.ba??1,abba??使得即對于任意非零的數(shù),如果存在另一個數(shù),倒數(shù):則說是的倒數(shù).aba一、逆矩陣產(chǎn)生的背景矩陣:運算中的1,矩陣,B在矩陣的運算中,單位陣相當(dāng)于數(shù)的乘法I那
2024-12-23 01:13
【摘要】第四章矩陣的分解本章我們主要討論矩陣的四種分解:矩陣的三角分解,QR分解,滿秩分解,奇異值分解。矩陣的三角分解三角分解及其存在唯一性問題定義設(shè),如果存在下三角矩陣
2025-02-03 15:15
【摘要】矩陣?yán)碚撔〗Y(jié)第一節(jié)矩陣及其運算第二節(jié)矩陣的初等變換第三節(jié)逆矩陣第四節(jié)矩陣?yán)碚摰膽?yīng)用?1.理解矩陣的概念。知道單位陣、對角陣、三角陣、對稱陣等的性質(zhì)。?2.熟練掌握矩陣的線性運算、乘法運算、轉(zhuǎn)置及其運算規(guī)律。?3.了解方陣的冪與方陣的乘積的行列式。?4.熟練掌握矩陣的初等變換。了解初等矩陣和矩陣
2025-02-03 15:07
【摘要】1§2一、相似矩陣的概念和性質(zhì)定義對于n階方陣A和B,若存在n階可逆方陣P,使得,1BAPP??則稱A與B相似,記為.~BA矩陣的“相似”關(guān)系具有以下特性:(1)反身性:對任何方陣A,總有AA~(令EP?即可);(2)對稱性:若BA~,則
2025-04-05 22:15
【摘要】1Euclid空間上的線性泛函的內(nèi)積刻畫及推廣摘要:本文在一般意義上討論了Euclid空間上的線性泛函,尋找到了它能用內(nèi)積來刻畫的充要條件,并將結(jié)論進一步推廣到雙線性函數(shù)的情形,最后說明了本文的主要結(jié)論與.本文得到的主要結(jié)論是:f是Euclid空間V上的線性泛函,則下列條件是等價的:1)存在唯一的fyV?,
2024-09-08 18:26
【摘要】第一章酸堿理論§1、酸堿概念和酸堿強度Bronsted-Lowry酸堿質(zhì)子論Lewis酸堿電子論1923年Br?nstedJN和LowryTM各自獨立提出了酸和堿的定義:酸是質(zhì)子的給體,堿是質(zhì)子的受體,酸放出一個質(zhì)子,本身變成堿酸(A)→堿(B-)+質(zhì)子(H+)
2025-01-19 17:13
【摘要】2021年11月10日8時25分§1矩陣的定義與運算目的要求(1)理解矩陣的定義;(2)掌握矩陣的基本運算及性質(zhì).2021年11月10日8時25分一、矩陣概念的引入???????????????????nnnnnnnnnnbxaxaxabxaxax
2024-10-31 21:34