【摘要】設(shè)為實數(shù),函數(shù).(1)若,求的取值范圍;(2)求的最小值;(3)設(shè)函數(shù),直接寫出(不需給出演算步驟)不等式的解集.答案:(1)若,則(2)當時,當時,綜上(3)時,得,當時,;當時,得1)時,2)時,3)時,來源:09年高考江蘇卷題型:解答題,難度:較難
2025-01-29 05:27
【摘要】3.3三角函數(shù)的積化和差與和差化積一。學(xué)習(xí)要點:積化和差與和差化積公式及其簡單應(yīng)用。二。學(xué)習(xí)過程:1.積化和差公式2.和差化積公式例1:1。把cos3cos???化成積的形式.2。把1sincos????化成積的形式例2:已知
2024-12-17 23:35
【摘要】設(shè)函數(shù)f(x)=,解方程:f(x)=f-1(x).答案:首先f(x)定義域為(-∞,-)∪[-,+∞);其次,設(shè)x1,x2是定義域內(nèi)變量,且x10,所以f(x)在(-∞,-)上遞增,同理f(x)在[-,+∞)上遞增。在方程f(x)=f-1(x)中,記f(x)=f-1(x)=y,則y≥0,又由f-1(x)=y得f(
2025-01-30 10:12
【摘要】定義在R上的函數(shù)同時滿足條件:①對定義域內(nèi)任意實數(shù),都有;②時,.那么,(1)試舉出滿足上述條件的一個具體函數(shù);(2)求的值;(3)比較和的大小并說明理由.答案:(1);(2)令,,則,而,∴;(3)∵,∴,∴…4分來源:09年浙江杭州市月考二題型:解答題,難度:中檔已知:f(x)
2025-01-29 05:57
【摘要】?學(xué)習(xí)目標能從兩角和與差的正、余弦公式推導(dǎo)出積化和差、和差化積公式;能綜合運用和、差與倍角的三角公式進行恒等變換,體會化歸思想在解題中的應(yīng)用。?引引入入新新課課1、復(fù)習(xí)公式??)cos(??_________
【摘要】雙基達標?限時20分鐘?1.化簡(cos47°30′-sin47°30′)(sin23°cos8°-sin67°sin8°)=().B.-14C.1D.-1解析原式=(cos27°30′+
【摘要】一、選擇題1.sin°cos°=()A.22B.24C.2+14D.2+24【解析】原式=12[sin(°+°)+sin(°-°)]=12(sin45°+sin30°)=12×(22+
【摘要】已知:.(1)求;(2)判斷此函數(shù)的奇偶性;(3)若,求的值.答案:(1)因為所以=(2)由,且知所以此函數(shù)的定義域為:(-1,1)又由上可知此函數(shù)為奇函數(shù).(3)由知得且解得所以的值為:來源:09年湖北宜昌月考一題型:解答題,難度:中檔
2025-01-29 05:17
【摘要】設(shè)是定義在D上的函數(shù),若對D中的任意兩數(shù)(),恒有,則稱為定義在D上的C函數(shù).(Ⅰ)試判斷函數(shù)是否為定義域上的C函數(shù),并說明理由;(Ⅱ)若函數(shù)是R上的奇函數(shù),試證明不是R上的C函數(shù);(Ⅲ)設(shè)是定義在D上的函數(shù),若對任何實數(shù)以及D中的任意兩數(shù),恒有,則稱為定義在D上的C函數(shù).已知是R上的C函數(shù),m是給定的正整數(shù),設(shè),且,記.對于滿足條件的任意函數(shù),試求的最大值.
2025-01-29 10:04
【摘要】集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C=,求a的值.答案:由已知,得B={2,3},C={2,-4}.(1)A∩B=A∪B,A=B于是2,3是一元二次方程x2-ax+a2-19=0的兩個根,由韋達定理知:
2025-01-29 05:16
【摘要】最受信賴的教育品牌北辰教育學(xué)科老師輔導(dǎo)講義學(xué)員姓名:年級:高一年級輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:授課日期2016年1月29日授課時段15:00-17:00授課主題三角比公式補充(積化
2024-08-23 23:54
【摘要】一輛郵政車自A城駛往B城,沿途有n個車站(包括起點站A和終點站B),每停靠一站便要卸下前面各站發(fā)往該站的郵袋各一個,同時又要裝上該站發(fā)往后面各站的郵袋各一個,設(shè)該車從各站出發(fā)時郵政車內(nèi)的郵袋數(shù)構(gòu)成一個有窮數(shù)列,試求:(1)(2)郵政車從第k站出發(fā)時,車內(nèi)共有郵袋數(shù)是多少個?(3)求數(shù)列的前k項和并證明:答案:(1)由題意得:(2)在第k站出發(fā)
2025-01-29 09:48
【摘要】和差化積公式在三角函數(shù)中的綜合運用和差化積公式與積化和差公式是兩角和差三角函數(shù)公式基礎(chǔ)上利用導(dǎo)出的兩組公式,對于和差化積公式,考慮兩個同名正弦或余弦三角函數(shù)值之和或差,將兩個角度表示為兩個角度的和與差的形式,然后利用兩角和差正余弦三角函數(shù)公式展開運算,即可得到兩個角度三角值乘積的形式,如,、,將這兩個角度關(guān)系代入上式,得到,而積化和差公式推導(dǎo)遵循相反的運算過程。和差化積公式是不宜機械記憶
2024-08-11 00:17
【摘要】已知命題””同時為假命題,求x的值。答案:同時為假命題,所以為真,為假。故來源:09年福建省福州市月考一題型:解答題,難度:中檔已知命題所有有理數(shù)都是實數(shù),命題正數(shù)的對數(shù)都是負數(shù),則下列命題中為真命題的是A. B. C. D.答案:D來源:08年高考廣東卷題型:選擇題,難度:中檔已知:命題是的反函
【摘要】和差化積公式: sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2] cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2] 和差化積公式由積化和差公式變形得到,積化和差公式是由正
2024-08-10 23:59