【摘要】有關(guān)一階線性微分方程積分因子的解法摘要:當(dāng)一階線性微分方程不是恰當(dāng)微分方程或不存在只含有一個(gè)未知數(shù)的積分因子時(shí),微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導(dǎo)數(shù);偏微分方程;線性微分方程;積分因子一引言對(duì)于一階微分方程,
2025-07-09 03:52
【摘要】第七節(jié)(1)二階常系數(shù)齊次線性微分方程xrye?和它的導(dǎo)數(shù)只差常數(shù)因子,代入①得0e)(2???xrqprr02???qrpr稱②為微分方程①的特征方程,1.當(dāng)042??qp時(shí),②有兩個(gè)相異實(shí)根方程有兩個(gè)線性無(wú)關(guān)的特解:因此方程的通解為xrxrCCy21ee21??(r為待定常數(shù)
2025-05-16 04:31
【摘要】二、線性微分方程解的結(jié)構(gòu)三、二階常系數(shù)齊次線性方程解法五、小結(jié)思考題第五節(jié)二階常系數(shù)線性微分方程四、二階常系數(shù)非齊次線性方程解法一、定義一、定義0??????qyypy二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式二、線性微分方程的解的結(jié)構(gòu)
2024-09-19 12:45
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第三十講一元微積分的應(yīng)用(六)腳本編寫(xiě):劉楚中教案制作:劉楚中——微積分在物理中的應(yīng)用第七章常微分方程本章學(xué)習(xí)要求:?了解微分方程、解、通解、初始條件和特解的概念.?了解下列幾種一階微分方程:變量可分離的方
2024-11-03 08:19
【摘要】)(xfyqypy??????),(為常數(shù)qp根據(jù)解的結(jié)構(gòu)定理,其通解為Yy?*y?非齊次方程特解齊次方程通解求特解的方法根據(jù)f(x)的特殊形式,的待定形式,代入原方程比較兩端表達(dá)式以確定待定系數(shù).①—待定系數(shù)法第七節(jié)(2)二階常系數(shù)非齊次線性微分方程)([exQx??
2025-05-16 04:37
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-07-10 01:32
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁(yè)下頁(yè)返回
2024-11-03 17:11
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個(gè)標(biāo)準(zhǔn)類型
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時(shí),當(dāng)0)(?xf二階線性齊次微分方程時(shí),當(dāng)0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-02-03 08:36
【摘要】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設(shè))(yG和)(xF分別為)(yg和)(xf的原函數(shù),則CxFyG??)()(為微分方程的通解.例1.求微分
2024-08-20 16:24
【摘要】第十九講:一階微分方程、可降階微分方程的練習(xí)題答案一、單項(xiàng)選擇題(每小題4分,共24分)1.微分方程是(B)A.一階線性方程B.一階齊次方程C.可分離變量方程D.二階微分方程解:變形原方程是一階齊次方程,選B2.下列微分方程中,是可分離變量的方程是(C)A.
2025-01-29 03:34
【摘要】第三節(jié)一階線性微分方程一、一階線性微分方程二、伯努利方程)()(xQyxPdxdy??一階線性微分方程的標(biāo)準(zhǔn)形式:,0)(?xQ當(dāng)上述方程稱為齊次的.上述方程稱為非齊次的.,0)(?xQ當(dāng)例如,2xydxdy??,sin2ttxdtdx??,32???xyyy,1c
2024-09-20 21:44
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束微分方程課程的一個(gè)主要問(wèn)題是求解,即把微分方程的解通過(guò)初等函數(shù)或它們的積分表達(dá)出來(lái),但對(duì)一般的微分方程是無(wú)法求解的,如對(duì)一般的二元函數(shù)),(yxf,我們無(wú)法求出一階微分方程),(yxfy??(1)的解,但是對(duì)某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問(wèn)題第二章
2024-12-23 09:04
【摘要】第六章常微分方程第二節(jié)一階微分方程1第六章常微分方程第一節(jié)微分方程的基本概念第二節(jié)一階微分方程第三節(jié)可降階的高階微分方程第四節(jié)二階線性微分方程解的結(jié)構(gòu)第五節(jié)二階常系數(shù)線性齊次微分方程第六章常微分方程第二節(jié)一階微分方程2第二節(jié)一階微分方程本
2024-08-24 17:56
【摘要】一、問(wèn)題的提出二、微分方程的定義三、主要問(wèn)題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過(guò)點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2024-09-19 12:40