freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx歷年備戰(zhàn)中考數(shù)學(xué)易錯(cuò)題匯編-二次函數(shù)練習(xí)題-閱讀頁(yè)

2025-03-30 22:24本頁(yè)面
  

【正文】 次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)等腰三角形的定義,可得方程,根據(jù)解方程,可得答案.【詳解】(1)將A,B,C代入函數(shù)解析式,得,解得,這個(gè)二次函數(shù)的表達(dá)式y(tǒng)=x2﹣2x﹣3;(2)設(shè)BC的解析式為y=kx+b,將B,C的坐標(biāo)代入函數(shù)解析式,得,解得,BC的解析式為y=x﹣3,設(shè)M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,當(dāng)n=時(shí),PM最大=;②當(dāng)PM=PC時(shí),(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合題意,舍),n2=2,n2﹣2n﹣3=3,P(2,3);當(dāng)PM=MC時(shí),(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合題意,舍),n2=3+(不符合題意,舍),n3=3,n2﹣2n﹣3=24,P(3,24);綜上所述:P(2,﹣3)或(3,2﹣4).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰三角形等知識(shí),綜合性較強(qiáng),解題的關(guān)鍵是認(rèn)真分析,弄清解題的思路有方法.13.在直角坐標(biāo)系中,我們不妨將橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)之為“中國(guó)結(jié)”。1時(shí),函數(shù)y=(k≠0,k為常數(shù))的圖象上最少有4個(gè)“中國(guó)結(jié)”:(1,k)、(﹣1,﹣k)、(k,1)、(﹣k,﹣1),這與函數(shù)y=(k≠0,k為常數(shù))的圖象上有且只有兩個(gè)“中國(guó)結(jié)”矛盾,綜上可得,k=1時(shí),函數(shù)y=(k≠0,k為常數(shù))的圖象上有且只有兩個(gè)“中國(guó)結(jié)”:(1,1)、(﹣﹣1);k=﹣1時(shí),函數(shù)y=(k≠0,k為常數(shù))的圖象上有且只有兩個(gè)“中國(guó)結(jié)”:(1,﹣1)、(﹣1).(3)令(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=0,則[(k﹣1)x+k][(k﹣2)x+(k﹣1)]=0,∴∴,整理,可得x1x2+2x2+1=0,∴x2(x1+2)=﹣1,∵xx2都是整數(shù),∴或∴或①當(dāng)時(shí),∵,∴k=;②當(dāng)時(shí),∵,∴k=k﹣1,無(wú)解;綜上,可得k=,x1=﹣3,x2=1,y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=[()2﹣3+2]x2+[2()2﹣4+1]x+()2﹣=﹣x2﹣x+①當(dāng)x=﹣2時(shí),y=﹣x2﹣x+=﹣(﹣2)2﹣(﹣2)+=②當(dāng)x=﹣1時(shí),y=﹣x2﹣x+=﹣(﹣1)2﹣(﹣1)+=1③當(dāng)x=0時(shí),y=,另外,該函數(shù)的圖象與x軸所圍成的平面圖形中x軸上的“中國(guó)結(jié)”有3個(gè):(﹣2,0)、(﹣0)、(0,0).綜上,可得若二次函數(shù)y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k為常數(shù))的圖象與x軸相交得到兩個(gè)不同的“中國(guó)結(jié)”,該函數(shù)的圖象與x軸所圍成的平面圖形中(含邊界),一共包含有6個(gè)“中國(guó)結(jié)”:(﹣3,0)、(﹣2,0)、(﹣1,0)(﹣1,1)、(0,0)、(1,0).考點(diǎn):反比例函數(shù)綜合題14.如圖,直線(xiàn)y=﹣x+分別與x軸、y軸交于B、C兩點(diǎn),點(diǎn)A在x軸上,∠ACB=90176。則在Rt△AOC中可得∠ACO=30176。在Rt△DMH中利用三角函數(shù)的定義可得到DH、MH與DM的關(guān)系,可設(shè)出M點(diǎn)的坐標(biāo),則可表示出DM的長(zhǎng),從而可表示出△DMH的周長(zhǎng),利用二次函數(shù)的性質(zhì)可求得其最大值.試題解析: (1)∵直線(xiàn)y=﹣x+分別與x軸、y軸交于B、C兩點(diǎn),∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60176?!唷螦CO=30176。=,即=,解得AO=1,∴A(﹣1,0);(2)∵拋物線(xiàn)y=ax2+bx+經(jīng)過(guò)A,B兩點(diǎn),∴,解得,∴拋物線(xiàn)解析式為y=﹣x2+x+;(3)∵M(jìn)D∥y軸,MH⊥BC,∴∠MDH=∠BCO=60176?!郉H=DM,MH=DM,∴△DMH的周長(zhǎng)=DM+DH+MH=DM+DM+DM=DM,∴當(dāng)DM有最大值時(shí),其周長(zhǎng)有最大值,∵點(diǎn)M是直線(xiàn)BC上方拋物線(xiàn)上的一點(diǎn),∴可設(shè)M(t,﹣t2+t+),則D(t,﹣t+),∴DM=﹣t2+t+),則D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴當(dāng)t=時(shí),DM有最大值,最大值為,此時(shí)DM==,即△DMH周長(zhǎng)的最大值為.考點(diǎn):二次函數(shù)的綜合應(yīng)用,待定系數(shù)法,三角函數(shù)的定義,4方程思想15.空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,已知木欄總長(zhǎng)為100米.(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長(zhǎng);(2)已知0<α<50,且空地足夠大,如圖2.請(qǐng)你合理利用舊墻及所給木欄設(shè)計(jì)一個(gè)方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.【答案】(1)利用舊墻AD的長(zhǎng)為10米.(2)見(jiàn)解析.【解析】【分析】(1)按題意設(shè)出AD,表示AB構(gòu)成方程;(2)根據(jù)舊墻長(zhǎng)度a和AD長(zhǎng)度表示矩形菜園長(zhǎng)和寬,注意分類(lèi)討論s與菜園邊長(zhǎng)之間的數(shù)量關(guān)系.【詳解】(1)設(shè)AD=x米,則AB=米依題意得,=450解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用舊墻AD的長(zhǎng)為10米.(2)設(shè)AD=x米,矩形ABCD的面積為S平方米①如果按圖一方案圍成矩形菜園,依題意得:S=,0<x<a∵0<a<50∴x<a<50時(shí),S隨x的增大而增大當(dāng)x=a時(shí),S最大=50aa2②如按圖2方案圍成矩形菜園,依題意得S=,a≤x<50+當(dāng)a<25+<50時(shí),即0<a<時(shí),則x=25+時(shí),S最大=(25+)2=,當(dāng)25+≤a,即≤a<50時(shí),S隨x的增大而減小∴x=a時(shí),S最大==,綜合①②,當(dāng)0<a<時(shí),()=>0>,此時(shí),按圖2方案圍成矩形菜園面積最大,最大面積為平方米當(dāng)≤a<50時(shí),兩種方案圍成的矩形菜園面積最大值相等.∴當(dāng)0<a<時(shí),圍成長(zhǎng)和寬均為(25+)米的矩形菜園面積最大,最大面積為平方米;當(dāng)≤a<50時(shí),圍成長(zhǎng)為a米,寬為(50)米的矩形菜園面積最大,最大面積為()平方米.【點(diǎn)睛】本題以實(shí)際應(yīng)用為背景,考查了一元二次方程與二次函數(shù)最值的討論,解得時(shí)注意分類(lèi)討論變量大小關(guān)系.
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1