【摘要】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2025-01-13 01:51
【摘要】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2025-01-24 00:14
【摘要】星期天,小華去圖書超市購書,因他所買書類在二樓,故他乘電梯上樓,已知電梯AB段的長度8m,傾斜角為30°,則二樓的高度(相對于底樓)是______m4ABC830°??小華同學去坡度為1︰2的土坡上種樹,要求株距(相鄰兩樹間的水平距離)是4m,
2024-09-11 18:04
【摘要】寶應縣實驗初中辛乃青星期天,小華去圖書超市購書,因他所買書類在二樓,故他乘電梯上樓,已知電梯AB段的長度8m,傾斜角為30°,則二樓的高度(相對于底樓)是______m4ABC830°??小華同學去坡度為1︰2的土坡上種樹,要求株距(
2025-06-19 03:16
【摘要】精品資源《解直角三角形》基礎測試一填空題(每小題6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,則cosA= ,sinB= ,tanB= ,cotB= ??;2.直角三角形ABC的面積為24cm2,直角邊AB為6cm,∠A是銳角,則sinA= ??;3.等腰三角形底邊長10cm,周長為36cm,則一底角的余切值為 .
2025-05-12 07:47
【摘要】【探究目標】1.目的與要求能綜合運用直角三角形的勾股定理與邊角關系解決簡單的實際問題.2.知識與技能能根據(jù)直角三角形中的角角關系、邊邊關系、邊角關系解直角三角形,能運用解直角三角形的知識解決有關的實際問題.3.情感、態(tài)度與價值觀通過解直角三角形的應用,培養(yǎng)學生學數(shù)學、用數(shù)學的意識和能力,激勵學生多接觸社會、了解生活并熟悉一些生產和生活中的實際事物.【探究指
2025-07-25 19:21
【摘要】“啟發(fā)”輔導中心專用資料九(下)數(shù)學輔導---------解直角三角形21、計算:(1)(2)(3)cos30°+sin45°(4)6tan230°-sin60°-2sin45°
2024-09-27 07:43
【摘要】第25章?解直角三角形復習第25章?解直角三角形復習二.重點、難點:?1.重點:???(1)探索直角三角形中銳角三角函數(shù)值與三邊之間的關系.掌握三角函數(shù)定義式:sinA=,cosA=,tanA=,cotA=.???(2)掌握30°、45°、60&
2025-07-25 22:10
【摘要】(2010哈爾濱)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,則BC的長為().C(A)7sin35°(B)(C)7cos35°(D)7tan35°(2010紅河自治州)計算:+2sin60°=(2010紅河自治州)(本小題滿分9分)如圖5,一架飛機
2024-09-14 12:59
2024-09-15 19:13
【摘要】直角三角形、斜邊中線、等腰直角三角形專題一、直角三角形的性質1.一塊直角三角板放在兩平行直線上,如圖,∠1+∠2= 度.2.如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC,求證:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如圖所示,在△ABC中,CD,BE是兩條高,那么圖中與∠A相等的角有
2025-05-12 06:30
【摘要】解直角三角形趙常付教學目標:知識與技能:1、使學生理解直角三角形中五個元素的關系,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.2、通過綜合運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力.3、滲透數(shù)形結合的數(shù)學思想,培養(yǎng)學生良好的學習習慣.過程與方法:通過綜合運用勾股定理,直角三
2024-09-14 23:43
【摘要】單元知識網(wǎng)絡直角三角形的邊角關系解直角三角形知一邊一銳角解直角三角形知兩邊解直角三角形添設輔助線解直角三角形知斜邊一銳角解直角三角形知一直角邊一銳角解直角三角形知兩直角邊解直角三角形知一斜邊一直角邊解直角三角形實際應用抽象出圖形,再添設輔
2024-09-14 13:18
【摘要】教學目標:、勾股定理等知識解決在直角三角形中,由已知的一些邊、角。求出另一些邊角的問題的過程。了解直角三角形的概念。、勾股定理等知識解直角三角形,以及解決與直角三角形有關的簡單實際問題。重點和難點:。2.解直角三角形的過程中,由已知條件求某條邊或某個角的方法,以及求這些邊、角的順序往往不唯一
2024-09-14 17:23
【摘要】十、解直角三角形葛泉云蘇州市文昌實驗中學【課標要求】1.掌握直角三角形的判定、性質.2.能用面積法求直角三角形斜邊上的高.3.掌握勾股定理及其逆定理,能用勾股定理解決簡單的實際問題.4.理解銳角三角函數(shù)定義(正弦、余弦、正切、余切),知道四個三角函數(shù)間的關系.5.能根據(jù)已知條件求銳角三角函數(shù)值.6.掌握并能靈活使用特殊角的三角函數(shù)值.7.能用三角函數(shù)、勾股
2024-09-01 19:23