freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學(xué)數(shù)學(xué)概念教學(xué)心得體會(huì)及擴(kuò)展資料-在線瀏覽

2024-11-16 22:07本頁(yè)面
  

【正文】 葉片繞o點(diǎn)直接逆時(shí)針旋轉(zhuǎn)180176。教師:同學(xué)們真不錯(cuò),能用不同的方式讓葉片從位置a旋轉(zhuǎn)到位置c。教師:葉片可以從位置a順時(shí)針方向旋轉(zhuǎn)到位置c,也可以逆時(shí)針方向旋轉(zhuǎn)到位置c。三、概念鞏固第31頁(yè)課堂活動(dòng)第1題。(略)第32頁(yè)練習(xí)七第1,2,3題。(略)四、總結(jié)這節(jié)課我們學(xué)了些什么?研究旋轉(zhuǎn)時(shí)應(yīng)從哪幾個(gè)方面進(jìn)行研究?小學(xué)數(shù)學(xué)概念教學(xué)的心得體會(huì)2一、什么是數(shù)學(xué)概念數(shù)學(xué)概念是客觀現(xiàn)實(shí)中的數(shù)量關(guān)系和空間形式的本質(zhì)屬性在人腦中中的反映。在數(shù)學(xué)中,客觀事物的顏色、材料、氣味等方面的屬性都被看作非本質(zhì)屬性而被舍棄,只保留它們?cè)谛螤?、大小、位置及?shù)量關(guān)系等方面的共同屬性。小學(xué)數(shù)學(xué)中有很多概念,包括:數(shù)的概念、運(yùn)算的概念、量與計(jì)量的概念、幾何形體的概念、比和比例的概念、方程的概念,以及統(tǒng)計(jì)初步知識(shí)的有關(guān)概念等。如只有明確牢固地掌握數(shù)的概念,才能理解運(yùn)算概念,而運(yùn)算概念的掌握,又能促進(jìn)數(shù)的整除性概念的形成。定義式是用簡(jiǎn)明而完整的語(yǔ)言揭示概念的內(nèi)涵或外延的方法,具體的做法是用原有的概念說(shuō)明要定義的新概念。這樣的概念,是在對(duì)大量的探究材料的分析、綜合、比較、分類中,使之從直觀到表象、繼而上升為理性的認(rèn)識(shí)。這樣定義的概念,條件和結(jié)論十分明顯,便于學(xué)生一下子抓住數(shù)學(xué)概念的本質(zhì)。這種方法與定義式不同,描述式概念,一般借助于學(xué)生通過(guò)感知所建立的表象,選取有代表性的特例做參照物而建立。22”等。一種是對(duì)數(shù)學(xué)中的點(diǎn)、線、體、集合等原始概念都用描述法加以說(shuō)明?!捌矫妗本陀谩罢n桌面”、“黑板面”、“湖面”來(lái)說(shuō)明。例如,對(duì)直圓柱和直圓錐的認(rèn)識(shí),由于小學(xué)生還缺乏運(yùn)動(dòng)的觀點(diǎn),不能像中學(xué)生那樣用旋轉(zhuǎn)體來(lái)定義,因此只能通過(guò)實(shí)物形象地描述了它們的特征,并沒有以定義的形式揭示它們的本質(zhì)屬性。一般來(lái)說(shuō),在數(shù)學(xué)教材中,小學(xué)低年級(jí)的概念采用描述式較多,隨著小學(xué)生思維能力的逐步發(fā)展,中年級(jí)逐步采用定義式,不過(guò)有些定義只是初步的,是有待發(fā)展的。對(duì)于不容易理解的概念就暫不給出定義或者采用分階段逐步滲透的辦法來(lái)解決。在進(jìn)行數(shù)學(xué)概念教學(xué)時(shí),我們必須注意充分領(lǐng)會(huì)教材的這兩個(gè)特點(diǎn)。小學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí)包括:概念、定律、性質(zhì)、法則、公式等,其中數(shù)學(xué)概念不僅是數(shù)學(xué)基礎(chǔ)知識(shí)的重要組成部分,而且是學(xué)習(xí)其他數(shù)學(xué)知識(shí)的基礎(chǔ)。數(shù)學(xué)中的法則都是建立在一系列概念的基礎(chǔ)上的。相反,如果一個(gè)學(xué)生概念不清,就無(wú)法掌握定律、法則和公式?!币箤W(xué)生理解掌握這個(gè)法則,必須事先使他們弄清“數(shù)位”、“個(gè)位”、“十位”、“個(gè)位滿十”等的意義,如果對(duì)這些概念理解不清,就無(wú)法學(xué)習(xí)這一法則??傊W(xué)數(shù)學(xué)中的一些概念對(duì)于今后的學(xué)習(xí)而言,都是一些基本的、基礎(chǔ)的知識(shí)。其次,數(shù)學(xué)概念是發(fā)展思維、培養(yǎng)數(shù)學(xué)能力的基礎(chǔ)。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養(yǎng)。在這個(gè)判斷中,學(xué)生必須對(duì)“未知數(shù)”、“等式”這幾個(gè)概念十分清楚,才能形成這個(gè)判斷,并以此來(lái)推斷出下面的6道題目,哪些是方程。5=(4)442=88(5)75247。通過(guò)一系列的判斷、推理使概念得到鞏固和運(yùn)用。三、理解概念,一要能舉出概念所反映的現(xiàn)實(shí)原型,二要明確概念的內(nèi)涵與外延,即明確概念所反映的一類事物的共同本質(zhì)屬性,和概念所反映的全體對(duì)象,三要掌握表示概念的詞語(yǔ)或符號(hào)。能對(duì)概念進(jìn)行分類,形成一定的概念系統(tǒng)。四、小學(xué)數(shù)學(xué)概念教學(xué)的過(guò)程與方法根據(jù)數(shù)學(xué)概念學(xué)習(xí)的心理過(guò)程及特征,數(shù)學(xué)概念的教學(xué)一般也分為三個(gè)階段:①引入概念,使學(xué)生感知概念,形成表象;②通過(guò)分析、抽象和概括,使學(xué)生理解和明確概念;③通過(guò)例題、習(xí)題使學(xué)生鞏固和應(yīng)用概念。概念引入得當(dāng),就可以緊緊地圍繞課題,充分地激發(fā)起學(xué)生的興趣和學(xué)習(xí)動(dòng)機(jī),為學(xué)生順利地掌握概念起到奠基作用。因此,教學(xué)中必須根據(jù)各種概念的產(chǎn)生背景,結(jié)合學(xué)生的具體情況,適當(dāng)?shù)剡x取不同的方式去引入概念。以感性材料為基礎(chǔ)引入新概念。例如,要學(xué)習(xí)“平行線”的概念,可以讓學(xué)生辨認(rèn)一些熟悉的實(shí)例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然后分化出各例的屬性,從中找出共同的本質(zhì)屬性。同樣可分析出門框和黑板上下邊的屬性。以感性材料為基礎(chǔ)引入新概念,是用概念形成的方式去進(jìn)行教學(xué)的,因此教學(xué)中應(yīng)選擇那些能充分顯示被引入概念的特征性質(zhì)的事例,正確引導(dǎo)學(xué)生去進(jìn)行觀察和分析,這樣才能使學(xué)生從事例中歸納和概括出共同的本質(zhì)屬性,形成概念。如果新、舊概念之間存在某種關(guān)系,如相容關(guān)系、不相容關(guān)系等,那么新概念的引入就可以充分地利用這種關(guān)系去進(jìn)行。又如,學(xué)習(xí)“整除”概念時(shí),可以從“除法”中的“除盡”來(lái)引入。再如,在學(xué)習(xí)質(zhì)數(shù)、合數(shù)概念時(shí),可用約數(shù)概念引入:“請(qǐng)同學(xué)們寫出數(shù)1,2,6,7,8,12,11,15的所有約數(shù)。以“問(wèn)題”的形式引入新概念,這也是概念教學(xué)中常用的方法。從概念的發(fā)生過(guò)程引入新概念。例如,小數(shù)、分?jǐn)?shù)等概念都可以這樣引入。(二)數(shù)學(xué)概念的形成引入概念,僅是概念教學(xué)的第一步,要使學(xué)生獲得概念,還必須引導(dǎo)學(xué)生準(zhǔn)確地理解概念,明確概念的內(nèi)涵與外延,正確表述概念的本質(zhì)屬性。對(duì)比與類比。例如,學(xué)習(xí)“整除”概念時(shí),可以與“除法”中的“除盡”概念進(jìn)行對(duì)比,去比較發(fā)現(xiàn)兩者的不同點(diǎn)。恰當(dāng)運(yùn)用反例。用反例去突出概念的本質(zhì)屬性,實(shí)質(zhì)是使學(xué)生明確概念的外延從而加深對(duì)概念內(nèi)涵的理解。但必須注意,所選的反例應(yīng)當(dāng)恰當(dāng),防止過(guò)難、過(guò)偏,造成學(xué)生的注意力分散,而達(dá)不到突出概念本質(zhì)屬性的目的。依靠感性材料理解概念,往往由于提供的感性材料具有片面性、局限性,或者感性材料的非本質(zhì)屬性具有較明顯的突出特征,容易形成干擾的信息,而削弱學(xué)生對(duì)概念本質(zhì)屬性的正確理解。一般來(lái)說(shuō),變式包括圖形變式、式子變式和字母變式等。(三)數(shù)學(xué)概念的鞏固為了使學(xué)生牢固地掌握所學(xué)的概念,還必須有概念的鞏固和應(yīng)用過(guò)程。注意及時(shí)復(fù)習(xí)概念的鞏固是在對(duì)概念的理解和應(yīng)用中去完成和實(shí)現(xiàn)的,同時(shí)還必須及時(shí)復(fù)習(xí),鞏固離不開必要的復(fù)習(xí)。當(dāng)概念教學(xué)到一定階段時(shí),特別是在章節(jié)末復(fù)習(xí)、期末復(fù)習(xí)和畢業(yè)總復(fù)習(xí)時(shí),要重視對(duì)所學(xué)概念的整理和系統(tǒng)化,從縱向和橫向找出各概念之間的關(guān)系,形成概念體系。概念的應(yīng)用可以從概念的內(nèi)涵和外延兩方面進(jìn)行。②根據(jù)定義判斷是非或改錯(cuò)。④根據(jù)定義計(jì)算。(2)判斷題:27和20是互質(zhì)數(shù)34與85是互質(zhì)數(shù)()有公約數(shù)1的兩個(gè)數(shù)是互質(zhì)數(shù)()兩個(gè)合數(shù)一定不是互質(zhì)數(shù)()(3)鈍角三角形的一個(gè)角是82o,另兩個(gè)角的度數(shù)是互質(zhì)數(shù),這兩個(gè)角可能是多少度?(4)如果p是質(zhì)數(shù),那么比p小的自然數(shù)都與p互質(zhì)。并說(shuō)明理由。(4)將概念按不同標(biāo)準(zhǔn)分類。(2)下列圖形中的陰影部分,哪些是扇形?(圖6-2)(3)分母是9的最簡(jiǎn)真分?jǐn)?shù)有_分子是9的假分?jǐn)?shù)中,最小的一個(gè)是(4)將自然數(shù)2-19按不同標(biāo)準(zhǔn)分成兩類(至少提出3種不同的分法)概念的應(yīng)用可分為簡(jiǎn)單應(yīng)用和綜合應(yīng)用,在初步形成某一新概念后通過(guò)簡(jiǎn)單應(yīng)用可以促進(jìn)對(duì)新概念的理解,綜合應(yīng)用一般在學(xué)習(xí)了一系列概念后,把這些概念結(jié)合起來(lái)加以應(yīng)用,這種練習(xí)可以培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。概念本身有自己嚴(yán)密的邏輯體系。由于客觀事物的不斷發(fā)展和變化,同時(shí)也由于人們認(rèn)識(shí)的不斷深化,因此,作為人們反映客觀事物本質(zhì)屬性的概念,也是在不斷發(fā)展和變化的。如對(duì)“數(shù)”這個(gè)概念來(lái)說(shuō),在不同的階段有不同的要求。又如,對(duì)“0”的認(rèn)識(shí),開始時(shí)只知道它表示沒有,然后知道又可以表示該數(shù)位上一個(gè)單位也沒有,還知道“0”可以表示界限等。解決這一矛盾的關(guān)鍵是要切實(shí)把握概念教學(xué)的階段性目標(biāo)。概念是逐步發(fā)展的,而且諸概念之間是互相聯(lián)系的。有許多概念的含義是逐步發(fā)展的,一般先用描述方法給出,以后再下定義。第一次是在學(xué)習(xí)小數(shù)以前,就讓學(xué)生初步認(rèn)識(shí)了分?jǐn)?shù),“像上面講的、等,都是分?jǐn)?shù)。第二次飛躍是由具體到抽象,把單位“1”平均分成若干份,表示其中的一份或幾份都可以用分?jǐn)?shù)來(lái)表示。然后概括分?jǐn)?shù)的定義,這只是描述性地給出了分?jǐn)?shù)的概念。第三次飛躍是對(duì)單位“1”的理解與擴(kuò)展,單位“1”不僅可以表示一個(gè)物體、一個(gè)圖形、一個(gè)計(jì)量單位,還可以是一個(gè)群體等,最后抽象出,分誰(shuí),誰(shuí)就是單位“1”,這樣單位“1”與自然數(shù)“1”的區(qū)別就更加明確了。再如長(zhǎng)方體和立方體的認(rèn)識(shí)在許多教材中是分成兩個(gè)階段進(jìn)行教學(xué)的。積累一些有關(guān)長(zhǎng)方體和立方體的感性認(rèn)識(shí),知道它們各是什么形狀,知道這些形狀的名稱。再?gòu)膶?shí)物中抽象出長(zhǎng)方體和立方體的圖形(并非透視圖)。僅僅停留在感性認(rèn)識(shí)的層次上。教學(xué)時(shí)仍要從實(shí)例引入。然后歸納出長(zhǎng)方體的特征。進(jìn)而可以讓學(xué)生對(duì)照實(shí)物,觀察圖形,弄清楚不改變觀察方向,最多可以看到幾個(gè)面和幾條棱。還可以讓學(xué)生想一想,看一看,逐步看懂長(zhǎng)方體的幾何圖形,形成正確的表象。有些概念不嚴(yán)格下定義,但也要依據(jù)學(xué)生的接受能力,或者用描述代替定義,或者用比較通俗易懂的語(yǔ)言揭示概念的本質(zhì)特征。(2)當(dāng)一個(gè)教學(xué)階段完成以后,應(yīng)根據(jù)具體情況,酌情指出概念是發(fā)展的,不斷變化的。說(shuō)明該學(xué)生對(duì)長(zhǎng)方體的概念有了更進(jìn)一步的理解,教師應(yīng)加以肯定。如“倍”的概念,在整數(shù)范圍內(nèi),通常所指的是,如果把甲量當(dāng)作1份,而乙量有這樣的幾份,那么乙量就是甲量的幾倍。如果把甲量當(dāng)作l份,乙量也可以是甲量的幾分之幾。數(shù)學(xué)概念隨著客觀事物本身的發(fā)展變化和研究的深入不斷地發(fā)展演變。教學(xué)時(shí)既要注意教學(xué)的階段性,不能把后面的要求提到前面,超越學(xué)生的認(rèn)識(shí)能力;又要注意教學(xué)的連續(xù)性,教前面的概念要留有余地,為后繼教學(xué)打下埋伏。加強(qiáng)直觀教學(xué),處理好具體與抽象的矛盾盡管教材中大部分概念沒有下嚴(yán)格的定義,而是從學(xué)生所了解的實(shí)際事例或已有的知識(shí)經(jīng)驗(yàn)出發(fā),盡可能通過(guò)直觀的具體形象,幫助學(xué)生認(rèn)識(shí)概念的本質(zhì)屬性。但對(duì)于小學(xué)生來(lái)說(shuō),數(shù)學(xué)概念還是抽象的。因此,在教學(xué)中,必須加強(qiáng)直觀,以解決數(shù)學(xué)概念的抽象性與學(xué)生思維形象性之間的矛盾。幾何初步知識(shí),無(wú)論是線、面、體的概念還是圖形特征、性質(zhì)的概念都非常抽象,因此,教學(xué)中更要加強(qiáng)演示、操作,通過(guò)讓學(xué)生量一量、摸一摸、擺一擺、拼一拼來(lái)讓學(xué)生體會(huì)這些概念,從而抽象出這些概念。上課時(shí),就讓每個(gè)學(xué)生在課堂作業(yè)本上寫出三個(gè)內(nèi)容:(1)寫出自己做的圓的直徑;(2)滾動(dòng)自己的圓,量出圓滾動(dòng)一周的長(zhǎng)度,寫在練習(xí)本上;(3)計(jì)算圓的周長(zhǎng)是直徑的幾倍。然后引導(dǎo)學(xué)生分析發(fā)現(xiàn):不管圓的大小,它的周長(zhǎng)總是直徑的3倍多一點(diǎn)。再讓學(xué)生任意畫一個(gè)圓,量出直徑和周長(zhǎng)加以驗(yàn)證。這樣教師借助于直觀教學(xué),運(yùn)用學(xué)生原有的一些基礎(chǔ)知識(shí),逐步抽象,環(huán)環(huán)緊扣,層次清楚。(2)結(jié)合學(xué)生的生活實(shí)際進(jìn)行具體與抽象的轉(zhuǎn)化教學(xué)中有許多數(shù)量關(guān)系都是從具體生活內(nèi)容中抽象出來(lái)的,因此,在教學(xué)中應(yīng)該充分利用學(xué)生的生活實(shí)際,運(yùn)用恰當(dāng)?shù)姆绞竭M(jìn)行具體與抽象的轉(zhuǎn)化,即把抽象的內(nèi)容轉(zhuǎn)化為學(xué)生的具體生活知識(shí),在此基礎(chǔ)上又將其生活知識(shí)抽象為教學(xué)內(nèi)容。乘法分配律的教學(xué)也是讓學(xué)生解答類似的問(wèn)題,如:一件上衣50元,一條褲子30元,買這樣的5套衣服需要多少元?這樣借助于學(xué)生熟悉的生活情景,使抽象的問(wèn)題變得具體化。這樣的訓(xùn)練有利于使學(xué)生的思維逐漸向抽象思維過(guò)渡,逐步緩解知識(shí)的抽象性與學(xué)生思維的具體形象性的矛盾。因此概念教學(xué)不能只停留在感性認(rèn)識(shí)上,在學(xué)生獲得豐富的感性認(rèn)識(shí)后,要對(duì)所觀察的事物進(jìn)行抽象概括,揭示概念的本質(zhì)屬性,使認(rèn)識(shí)產(chǎn)生飛躍,從感性上升到理性,形成概念。下面就概念教學(xué)中每個(gè)環(huán)節(jié)的教學(xué)策略及應(yīng)注意的問(wèn)題作一闡述。因?yàn)榻⒛芡怀鍪挛锕残缘?、清晰的典型表象是形成概念的重要基礎(chǔ),因此,在小學(xué)數(shù)學(xué)的概念教學(xué)中,無(wú)論以什么方式引入概念,都應(yīng)考慮如何使小學(xué)生在頭腦中建立起清晰的表象。如在一節(jié)教學(xué)分?jǐn)?shù)的意義的課上,一位教師為了突破單位“l(fā)”這一教學(xué)難點(diǎn),事先向?qū)W生提供了各種操作材料:一根繩子,4只蘋果圖,6只熊貓圖,一張長(zhǎng)方形紙,l米長(zhǎng)的線段等,通過(guò)比較、歸納出:一個(gè)物體、一個(gè)計(jì)量單位、一個(gè)整體都可以用單位“1”表示,從而突破理解單位“1”這一難點(diǎn),為理解分?jǐn)?shù)的意義奠定了基礎(chǔ)。例如角的認(rèn)識(shí),小學(xué)里講的角是平面角,可以讓學(xué)生觀察黑板、書面等平面上的角。二是所選材料要突出所授知識(shí)的本質(zhì)特征。因此教學(xué)時(shí)應(yīng)出示不同的圖形,使學(xué)生在不同的圖形中辨認(rèn)其不變的本質(zhì)屬性。促進(jìn)對(duì)概念理解的途徑有:(1)剖析概念中關(guān)鍵詞語(yǔ)的真實(shí)含義例如,分?jǐn)?shù)定義中的單位“1”、“平均分”、“表示這樣的一份或幾份的數(shù)”,學(xué)生只有對(duì)這些關(guān)鍵詞語(yǔ)的真實(shí)含義弄清楚了,才會(huì)對(duì)分?jǐn)?shù)的概念有了深刻的理解。對(duì)定義的分析是幫助學(xué)生認(rèn)識(shí)概念的又一次提高?!边@里的“一個(gè)頂點(diǎn)”、“垂線”、“垂足”都是一些關(guān)鍵詞語(yǔ)。指出畫“高”的關(guān)鍵是畫垂線,并注意限制條件:“過(guò)三角形的一個(gè)頂點(diǎn)(可以是任何一個(gè)頂點(diǎn)),作到它對(duì)邊的垂線,頂點(diǎn)和垂足之間的線段”。這實(shí)際上是在數(shù)學(xué)概念建立后,幫助學(xué)生對(duì)本質(zhì)屬性進(jìn)行剖析,既將本質(zhì)屬性再次從定義中分離出來(lái),加以明確。教師不僅要充分運(yùn)用肯定例證來(lái)幫助學(xué)生理解概念的內(nèi)涵,同時(shí)要及時(shí)運(yùn)用否定例證來(lái)促進(jìn)學(xué)生對(duì)概念的辨析。讓學(xué)生進(jìn)行判斷,引起學(xué)生討論來(lái)鞏固三角形的分類,以深化對(duì)三角形這一概念的外延的進(jìn)一步認(rèn)識(shí)。(3)變換本質(zhì)屬性的敘述或表達(dá)方式小學(xué)生理解和掌握概念的特點(diǎn)之一往往是:對(duì)某一概念的內(nèi)涵不很清楚,也不全面,把非本質(zhì)的特征作為本質(zhì)的特征。為此,往往需要變換概念的敘述或表達(dá)方式,讓學(xué)生從各個(gè)側(cè)面來(lái)理解概念。因?yàn)槭挛锏谋举|(zhì)屬性可以運(yùn)用不同的語(yǔ)言來(lái)表達(dá),如果學(xué)生對(duì)各種不同的敘述和表達(dá)都能理解和掌握,就說(shuō)明學(xué)生對(duì)概念的理解是透徹的,是靈活的,不是死記硬背的。如數(shù)與數(shù)字,數(shù)位與位數(shù),奇數(shù)與質(zhì)數(shù),偶數(shù)與合數(shù),化簡(jiǎn)比與求比值,時(shí)間與時(shí)刻,質(zhì)數(shù)、質(zhì)因數(shù)與互質(zhì)數(shù),周長(zhǎng)與面積,等等。如學(xué)習(xí)了“整除”,為了和以前學(xué)的“除盡”加以比較,可以設(shè)計(jì)這樣的練習(xí)題:下列等式中,哪些是整除,哪些是除盡?(1)8247。8=6(3)30247。5=(5)6247。3=、比較,從而得出:第(3)題是有余數(shù)的除法,當(dāng)然不能說(shuō)被除數(shù)被除數(shù)整除或除盡,其他各題當(dāng)然能說(shuō)被除數(shù)被除數(shù)除盡了。從上面的分析中,讓學(xué)生明白:整除是除盡的一種特殊情況,除盡包括了整除和一切商是有限小數(shù)的情況。(3)重視概念的運(yùn)用,發(fā)揮概念的作用正確、靈活地運(yùn)用概念,就是要求學(xué)生能夠正確、靈活地運(yùn)用概念組成判斷,進(jìn)行推理、計(jì)算、作圖等,能運(yùn)用概念分析和解決實(shí)際問(wèn)題。有經(jīng)驗(yàn)的教師,根據(jù)小學(xué)生對(duì)概念的認(rèn)識(shí)通常帶有具體性的特點(diǎn),在學(xué)生通過(guò)分析、綜合、抽象、概括出概念后,總是讓他們自舉例證,把概
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1