【摘要】第二章一、選擇題1.若a·c=b·c(c≠0),則()A.a(chǎn)=bB.a(chǎn)≠bC.|a|=|b|D.a(chǎn)在c方向上的正射影的數(shù)量與b在c方向上的正射影的數(shù)量必相等[答案]D[解析]∵a·c=b·c,∴|a|·|c|cos&
2025-01-30 23:43
【摘要】《向量數(shù)量積的運(yùn)算律》教學(xué)設(shè)計(jì)一、情景引入知識(shí)回顧:平面向量數(shù)量積的定義及幾何意義(學(xué)生回答)問(wèn)題導(dǎo)思:向量的數(shù)量積是否具有類(lèi)似于數(shù)量乘法那樣的運(yùn)算律?⑴交換律:ba?=;⑵結(jié)合律:??ba??==;⑶分配律:??cba??=。
2025-01-21 16:44
【摘要】教學(xué)設(shè)計(jì)一、課前延伸預(yù)習(xí)檢測(cè):判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線(xiàn)向量則A、B、C、D四點(diǎn)必在一條直線(xiàn)上。()(3)若干個(gè)向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
2025-01-22 11:25
【摘要】課題向量共線(xiàn)的條件課型新授課時(shí)1時(shí)間第4周主備人教研組長(zhǎng)包組領(lǐng)導(dǎo)編號(hào)教學(xué)目標(biāo)、單位向量、軸上的坐標(biāo)公式、數(shù)軸上的兩點(diǎn)間的距離公式;;教學(xué)內(nèi)容教學(xué)設(shè)計(jì)課前預(yù)習(xí)案知識(shí)鏈接:1.若有向量a?(a??0)、b?,實(shí)數(shù)λ,使b?=λ
【摘要】§平面向量的實(shí)際背景及基本概念【學(xué)習(xí)目標(biāo)】1、了解向量的實(shí)際背景;理解響亮的幾何表示;2、了解零向量、單位向量、向量的模、向量相等、共線(xiàn)向量等概念?!緦W(xué)習(xí)過(guò)程】:一、自學(xué)指導(dǎo)1、我們把________________________的量叫做向量;2、我們把____________________的線(xiàn)段叫做有向線(xiàn)段
【摘要】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說(shuō)明
【摘要】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過(guò)程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的性質(zhì)及運(yùn)算律.二.新課學(xué)習(xí)::兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
【摘要】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.已知a=(1,-1),b=(2,3),則a·b=().A.5B.4C.-2D.-1解析a·b=1×2+(-1)×3=-1.答案D2.已知向量a=(-2,1),b=
【摘要】2.4.1向量的數(shù)量積(1)【學(xué)習(xí)目標(biāo)】1.理解平面向量數(shù)量積的概念及其幾何意義2.掌握數(shù)量積的運(yùn)算法則3.了解平面向量數(shù)量積與投影的關(guān)系【預(yù)習(xí)指導(dǎo)】1.已知兩個(gè)非零向量a與b,它們的夾角為?,則把數(shù)量_________________叫做向量a與b的數(shù)量積(或內(nèi)積)。規(guī)定:零
2025-01-21 19:55
【摘要】2.4.1向量的數(shù)量積(2)【學(xué)習(xí)目標(biāo)】1、能夠理解和熟練運(yùn)用模長(zhǎng)公式,兩點(diǎn)距離公式及夾角公式;2、理解并掌握兩個(gè)向量垂直的條件?!绢A(yù)習(xí)指導(dǎo)】1、若),(),,(2211yxbyxa??則??ba______________________________2、向量的模長(zhǎng)公式:設(shè)),(
2025-01-22 12:31
【摘要】一、選擇題1.a(chǎn)=(-4,3),b=(5,6),則3|a|2-4a·b=()A.23B.57C.63D.83【解析】|a|2=a2=a·a=(-4)2+32=25,a·b=(-4,3)·(5,6)=-20+18=-2.∴3|a|
2025-01-30 23:40
【摘要】撰稿教師:李麗麗學(xué)習(xí)目標(biāo),會(huì)進(jìn)行平面向量數(shù)量積的坐標(biāo)運(yùn)算。。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材112頁(yè)~114頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1.向量?jī)?nèi)積的坐標(biāo)運(yùn)算已知兩個(gè)非零向量????1122a=x,y,b=x,y,ab=?(坐標(biāo)形式)。:
【摘要】2020/12/25平面向量數(shù)量積運(yùn)算律2020/12/25規(guī)定:零向量與任意向量的數(shù)量積為0,即0.??0a1OBba向量叫做向量在向量上的正射影已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量
2025-01-21 12:10
【摘要】向量數(shù)量積的運(yùn)算律復(fù)習(xí)回顧正射影的數(shù)量cosla??(內(nèi)積)cos,??ababa·b=:(1).a?b?a?b=0(2).a?a=|a|2或aaa??||(3).cos?=||||baba?范圍0≤〈a,b〉≤π;平面