【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)生活中的優(yōu)化問題學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】;初步會解有關(guān)函數(shù)最大值、最小值的實(shí)際問題(一般指單峰函數(shù))。。【學(xué)習(xí)重點(diǎn)】利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題。【學(xué)習(xí)難點(diǎn)】利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題。學(xué)習(xí)方
2025-01-22 17:30
【摘要】湖南省邵陽市隆回二中選修2-2學(xué)案導(dǎo)數(shù)及其應(yīng)用:1.1.2導(dǎo)數(shù)的概念導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.了解瞬時(shí)速度、瞬時(shí)變化率的概念;2.理解導(dǎo)數(shù)的概念,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會導(dǎo)數(shù)的思想及其內(nèi)涵;3.會求函數(shù)在某點(diǎn)的導(dǎo)數(shù)?!咀灾鲗W(xué)習(xí)】(認(rèn)真自學(xué)課本P4-6)探究一:瞬時(shí)速度:問題1:我們把物體在某一時(shí)刻的
2025-01-22 20:35
【摘要】2.反證法理解反證法的概念,掌握反證法證題的步驟.本節(jié)重點(diǎn):反證法概念的理解以及反證法的證題步驟.本節(jié)難點(diǎn):應(yīng)用反證法解決問題.1.反證法假設(shè)原命題(即在原命題的條件下,結(jié)論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明,從而證明了,這種證明方法叫做反證法
2025-01-20 23:14
【摘要】歸納是通過對特例的觀察和綜合去發(fā)現(xiàn)一般規(guī)律,一般通過觀察圖形或分析式子尋找規(guī)律,歸納過程的典型步驟是:先在諸多特例中發(fā)現(xiàn)某些相似性,再把相似性推廣為一個(gè)明確表述的一般命題,最后對該命題進(jìn)行檢驗(yàn)或論證.[例1]在德國布萊梅舉行的第48屆世乒賽期間,某商場櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有一層,就一
2025-01-20 19:03
【摘要】2.演繹推理理解演繹推理的概念,掌握演繹推理的形式,并能用它們進(jìn)行一些簡單的推理,了解合情推理與演繹推理的聯(lián)系與區(qū)別.本節(jié)重點(diǎn):演繹推理的結(jié)構(gòu)特點(diǎn).本節(jié)難點(diǎn):三段論推理規(guī)則.1.演繹推理從的原理出發(fā),推出情況下的結(jié)論的推理形式.它的特點(diǎn)是:由的推理.它的特征是:當(dāng)
2025-01-20 23:15
【摘要】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運(yùn)用綜合法、分析法證題.本節(jié)重點(diǎn):綜合法與分析法的概念及用分析法與綜合法證題的過程、特點(diǎn).本節(jié)難點(diǎn):用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2025-01-21 08:10
【摘要】3.復(fù)數(shù)代數(shù)形式的乘除運(yùn)算掌握復(fù)數(shù)的乘法、除法的運(yùn)算法則并能熟練準(zhǔn)確地運(yùn)用法則解決相關(guān)的問題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.本節(jié)難點(diǎn):復(fù)數(shù)除法.1.復(fù)數(shù)乘法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2025-01-20 23:19
【摘要】復(fù)數(shù)的概念一、學(xué)法建議:1、本節(jié)內(nèi)容概念較多,在理解的基礎(chǔ)上要牢記實(shí)數(shù)、虛數(shù)、純虛數(shù)與復(fù)數(shù)的關(guān)系,特別要明確:實(shí)數(shù)也是復(fù)數(shù),要把打復(fù)數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實(shí)數(shù),而不是純虛數(shù),初學(xué)復(fù)數(shù)時(shí)最易在這里出錯(cuò)。2、復(fù)數(shù)z=a+bi(a、是由它實(shí)部和虛
2025-01-22 20:23
【摘要】1.了解復(fù)合函數(shù)的定義,并能寫出簡單函數(shù)的復(fù)合過程;2.掌握復(fù)合函數(shù)的求導(dǎo)方法,并運(yùn)用求導(dǎo)方法求簡單的復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):①導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則的應(yīng)用.②復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)難點(diǎn):復(fù)合函數(shù)的求導(dǎo)方法.復(fù)合函數(shù)的概念一般地,對于兩個(gè)函數(shù)y=f(u)和
2025-01-20 17:04
【摘要】3.2復(fù)數(shù)代數(shù)形式的四則運(yùn)算3.復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義掌握復(fù)數(shù)加法、減法的運(yùn)算法則及其幾何意義,并能熟練地運(yùn)用法則解決相關(guān)的問題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的加減法.本節(jié)難點(diǎn):復(fù)數(shù)代數(shù)形式加減法的幾何意義.1.復(fù)數(shù)代數(shù)形式的加、減法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、
【摘要】1.導(dǎo)數(shù)的概念1.知道函數(shù)的瞬時(shí)變化率的概念,理解導(dǎo)數(shù)的概念.2.能利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).本節(jié)重點(diǎn):導(dǎo)數(shù)的定義.本節(jié)難點(diǎn):用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).對導(dǎo)數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負(fù),但Δx≠
【摘要】1.7定積分的簡單應(yīng)用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運(yùn)動(dòng)的路程、變力作功等問題.本節(jié)重點(diǎn):應(yīng)用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運(yùn)動(dòng)的路程、變力作功等實(shí)際問題.本節(jié)難點(diǎn):把實(shí)際問題抽象為定積分的數(shù)學(xué)模型.1.利用定
【摘要】①復(fù)數(shù)的分類a+bi?????實(shí)數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復(fù)數(shù)概念的問題,首先可找準(zhǔn)復(fù)數(shù)的實(shí)部與虛部(若復(fù)數(shù)為非標(biāo)準(zhǔn)代數(shù)形式,則應(yīng)通過代數(shù)運(yùn)算化為代數(shù)形式)
【摘要】1.4生活中的優(yōu)化問題舉例能利用導(dǎo)數(shù)知識解決實(shí)際生活中的最優(yōu)化問題.本節(jié)重點(diǎn):利用導(dǎo)數(shù)知識解決實(shí)際中的最優(yōu)化問題.本節(jié)難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立函數(shù)模型.1.解決實(shí)際應(yīng)用問題時(shí),要把問題中所涉及的幾個(gè)變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過分析、聯(lián)想、抽象和轉(zhuǎn)
【摘要】1.導(dǎo)數(shù)的概念對于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應(yīng)地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=