【摘要】線段的垂直平分線(1)我們?cè)?jīng)利用折紙的方法得到:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)距離相等.你能證明這一結(jié)論嗎?定理:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等已知:如圖,直線MN⊥AB,垂足是C,且AC=BC,P是MN上任意一點(diǎn).求證:PA=PB.ACB
2024-09-11 13:44
【摘要】哈五中問(wèn)題:如圖,A、B、C三個(gè)村莊合建一所學(xué)校,要求校址P點(diǎn)距離三個(gè)村莊都相等.請(qǐng)你幫助確定校址.???ABCABMNC??PMN?CABQ?ABMNP.Q.C?線段垂直平分線上的點(diǎn)和這條線
2025-01-12 05:26
【摘要】線段的垂直平分線關(guān)店中學(xué)繆培威海市政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,試問(wèn),該購(gòu)物中心應(yīng)建于何處,才能使得它到三個(gè)小區(qū)的距離相等。ABC實(shí)際問(wèn)題1煙威高速公路實(shí)際問(wèn)題2在煙威高速公路L的同側(cè),有兩個(gè)化工廠
2025-01-27 15:53
【摘要】3線段的垂直平分線第1課時(shí)線段垂直平分線的的性質(zhì)與判定北師版八年級(jí)數(shù)學(xué)下冊(cè)新課導(dǎo)入作線段AB的中垂線MN,垂足為C;在MN上任取一點(diǎn)P,連結(jié)PA、PB;量一量PA、PB的長(zhǎng),你能發(fā)現(xiàn)什么?ABMNCP新課探究
2025-04-14 16:37
【摘要】普陀區(qū)政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,請(qǐng)你規(guī)劃一下,該購(gòu)物中心應(yīng)建于何處,才能使它到三個(gè)小區(qū)的距離相等?ABC問(wèn)題?ABPMNPA=PBC直線MN⊥AB,垂足為C,且AC=CB.P1P1A=P1B……
2025-07-17 03:49
【摘要】第一章三角形的證明線段的垂直平分線第2課時(shí)線段垂直平分線的應(yīng)用1課堂講解?三角形三邊的垂直平分線?線段垂直平分線的作圖及應(yīng)用2課時(shí)流程逐點(diǎn)導(dǎo)講練課堂小結(jié)作業(yè)提升線段的垂直平分線的性質(zhì)與判定的內(nèi)容是什么?復(fù)習(xí)回顧1知識(shí)點(diǎn)三角形三邊的垂直平分
2025-01-29 01:26
【摘要】線段的垂直平分線(二)名山街道中學(xué)八年級(jí)數(shù)學(xué)備課組(二)學(xué)習(xí)目標(biāo)1.會(huì)進(jìn)行線段垂直平分線的尺規(guī)作圖。2.能作出軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸。一、新課導(dǎo)入有時(shí)我們感覺(jué)兩個(gè)圖形是軸對(duì)稱(chēng)的,如何驗(yàn)證呢?不折疊圖形,你能比較準(zhǔn)確地作出軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸嗎?二、自學(xué)教材教材第62—64頁(yè)止。?
2024-12-03 12:31
【摘要】線段的垂直平分線一、選擇題1.已知MN是線段AB的垂直平分線,C,D是MN上任意兩點(diǎn),則∠CAD和∠CBD之間的大小關(guān)系是()A.∠CAD∠CBD2.如圖1-75所示,在△ABC中,
2025-01-11 22:38
【摘要】.......1、線段垂直平分線的性質(zhì)(1)垂直平分線性質(zhì)定理:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.定理的作用:證明兩條線段相等(2)線段關(guān)于它的垂直平分線對(duì)稱(chēng).3、關(guān)于三角形三邊垂直平分線的定理
2024-08-07 22:15
【摘要】九年級(jí)數(shù)學(xué)(上冊(cè))第一章證明(二)(2)三角形的垂心駛向勝利的彼岸線段的垂直平分線的作法?已知:線段AB,如圖.?求作:線段AB的垂直平分線.?作法:?用尺規(guī)作線段的垂直平分線.?A和B為圓心,以大于AB/2長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C和D.ABCD?2.作直
2025-01-11 20:54
【摘要】THANKS
2025-04-14 07:52
【摘要】線段的垂直平分線(2)復(fù)習(xí)回顧我們把垂直且平分一條線段的直線叫作這條線段的垂直平分線.性質(zhì)1:線段垂直平分線上的點(diǎn)到線段兩端的距離相等.性質(zhì)2:到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.想一想如何過(guò)一點(diǎn)P作已知直線l的垂線呢?分析:由于兩點(diǎn)確定一條直線,因此我們可以通過(guò)在已知直線上作
2025-01-29 17:43
【摘要】?學(xué)習(xí)目標(biāo):1.理解線段垂直平分線的性質(zhì)和判定.2.能運(yùn)用線段垂直平分線的性質(zhì)和判定解決實(shí)際問(wèn)題.3.會(huì)用尺規(guī)經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的垂線,了解作圖的道理.?重點(diǎn):掌握線段垂直平分線的定理及判定定理。?難點(diǎn):線段垂直平分線的定理及判定定理的應(yīng)用。課件說(shuō)明猜一猜:
2025-01-24 04:19
【摘要】線段的垂直平分線教學(xué)設(shè)計(jì)教學(xué)內(nèi)容分析:這節(jié)課是把電子白板與幾何畫(huà)板結(jié)合的一節(jié)新授課。線段的垂直平分線是對(duì)前一課時(shí)關(guān)于軸對(duì)稱(chēng)圖形性質(zhì)的再認(rèn)識(shí),又是今后幾何作圖、證明、計(jì)算的基礎(chǔ)。學(xué)習(xí)過(guò)程中滲透的轉(zhuǎn)化、探索、歸納等數(shù)學(xué)思想方法對(duì)學(xué)生今后的數(shù)學(xué)學(xué)習(xí)也有重要的意義。學(xué)習(xí)線段垂直平分線相關(guān)知識(shí)是為學(xué)生創(chuàng)造了一次探究的機(jī)會(huì),是學(xué)習(xí)幾何學(xué)的一次磨練。課題:線段的垂直平分線學(xué)習(xí)目標(biāo)
2025-06-04 08:11
【摘要】典型例題例1.如圖,已知:在中,,,BD平分交AC于D.求證:D在AB的垂直平分線上.分析:根據(jù)線段垂直平分線的逆定理,欲證D在AB的垂直平分線上,只需證明即可.證明:∵,(已知),∴(的兩個(gè)銳角互余)又∵BD平分(已知)∴.∴(等角對(duì)等邊)∴D在AB的垂直平分線上(和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上).例2.如圖,已知
2025-05-12 07:09