【摘要】課題:兩角和與差的正切(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】(差)的正切公式的推導(dǎo)過(guò)程;(差)的正切公式進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn),求值和證明。【課前預(yù)習(xí)】1、求?15tan的值。2、兩角和的正切公式的推導(dǎo):
2025-01-22 21:43
【摘要】學(xué)習(xí)目標(biāo)1、理解以?xún)山遣畹挠嘞夜綖榛A(chǔ),推導(dǎo)兩角和、差正弦的方法。2、體會(huì)三角恒等變換特點(diǎn)的過(guò)程,理解推導(dǎo)過(guò)程,掌握公式的應(yīng)用。學(xué)習(xí)過(guò)程1、兩角和的余弦公式:2、兩角差的余弦公式:
2025-01-30 23:36
【摘要】學(xué)習(xí)目標(biāo)掌握用向量方法建立兩角差的余弦公式.通過(guò)簡(jiǎn)單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ).學(xué)習(xí)過(guò)程一、課前準(zhǔn)備自學(xué)過(guò)程:1、cos()????,2、cos()????
2025-01-30 23:39
【摘要】?jī)山呛团c差的余弦公式教學(xué)設(shè)計(jì)【教學(xué)三維目標(biāo)】:理解兩角和與差的余弦公式的推導(dǎo)過(guò)程,熟記兩角和與差的余弦公式,運(yùn)用兩角和與差的余弦公式,解決相關(guān)數(shù)學(xué)問(wèn)題;培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生逆向思維和發(fā)散思維能力;2過(guò)程與方法目標(biāo):通過(guò)對(duì)公式的推導(dǎo)提高學(xué)生研究問(wèn)題、分析問(wèn)題、解決問(wèn)題能力
【摘要】教學(xué)設(shè)計(jì):一:學(xué)習(xí)目標(biāo):二:復(fù)習(xí)引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標(biāo)表達(dá)式)__________ba??(2)觀察圖(一)單位圓上的點(diǎn)的坐標(biāo)表示p1()p2(
2025-01-21 16:43
【摘要】?jī)山呛团c差的余弦公式一.學(xué)習(xí)要點(diǎn):兩角和與差的余弦公式及其簡(jiǎn)單應(yīng)用。二.學(xué)習(xí)過(guò)程:1.兩角和與差的余弦公式及推導(dǎo):公式:
【摘要】?jī)山呛团c差的正弦公式一.學(xué)習(xí)要點(diǎn):兩角和與差的正弦公式及其簡(jiǎn)單應(yīng)用。二.學(xué)習(xí)過(guò)程:1.兩角和與差的正弦公式及推導(dǎo):公式:
【摘要】課題:兩角和與差的正切(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】,化簡(jiǎn)及證明三角恒等式;?!菊n前預(yù)習(xí)】1、若??tantan?,是方程0382???xx的兩根,且??,為銳角,則??)cos(??2、若????
2025-02-07 10:15
【摘要】§兩角和與差的正弦(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1、??sin????,??sin????。2、公式的結(jié)構(gòu)特征sin()????sin?cos??co
【摘要】§兩角和與差的余弦(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)1、公式)(???C:cos(-)???令?=-(??)得)(???C:cos()????特征:①
【摘要】?jī)山呛团c差的余弦學(xué)習(xí)目標(biāo):,能從兩角差的余弦公式導(dǎo)出兩角和的余弦公式,并會(huì)利用公式進(jìn)行三角函數(shù)式的化簡(jiǎn)和求值。,再利用公式和化簡(jiǎn)時(shí),注意公式的靈活運(yùn)用。自學(xué)指導(dǎo):?????????????????????)cos(??_______________________)cos(????自
2025-01-30 23:35
【摘要】?jī)山呛团c差的正切一、填空題+tan75°1-tan75°=________.2.已知α∈??????π2,π,sinα=35,則tan??????α+π4的值等于________.3.若sinα=45,tan(α+β)=1,且α是第二象限角,則tanβ的值是___
【摘要】高中數(shù)學(xué)必修四《兩角和與差的正切》教學(xué)設(shè)計(jì)一、概述本節(jié)課為1課時(shí),40分鐘。本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)?數(shù)學(xué)(必修四)》(人教B版)第三章《三角恒等變換》中的第三節(jié)《兩角和與差的正切》,是《兩角和與差的正余弦》的延伸,也是三角恒等變換公式的重要組成部分.教材主要通過(guò)兩角和的正弦公式及兩角和的余弦公式
2025-01-22 11:24
【摘要】3.兩角和與差的正切你能根據(jù)正切函數(shù)與正弦、余弦函數(shù)的關(guān)系,從C(α±β)、S(α±β)出發(fā),推導(dǎo)出用任意角α,β的正切表示tan(α+β)、tan(α-β)的公式嗎?1.公式T(α-β)是_____________________________________
【摘要】3.1兩角和與差的三角公式習(xí)題課例1將下列sincosaxbx?化成sin()Ax??的形式(1)3sin3cosxx?;(2)3sincosxx?;(3)sin3cosxx??;(4)sin3cosxx??;(5)sincosxx?;(6)sincosxx?