【摘要】第3章不等式(時(shí)間:120分鐘,滿(mǎn)分160分)一、填空題(本大題共14小題,每小題5分,共70分,請(qǐng)把答案填在題中橫線上)1.(2021·南京檢測(cè))若1a<1b<0,則下列不等式:①a+b<ab,②|a|>|b|,③a<b,④ba+ab>2中,正確的是________.(填序號(hào))
2025-02-07 06:25
【摘要】復(fù)習(xí)課不等式課時(shí)目標(biāo),并能解有關(guān)的實(shí)際應(yīng)用問(wèn)題.單的線性規(guī)劃問(wèn)題的解法..不等式—錯(cuò)誤!一、選擇題1.設(shè)ab0,則下列不等式中一定成立的是()A.a(chǎn)-b0B.0ab1C.ab<
2025-02-06 23:45
【摘要】第三章章末檢測(cè)(A)(時(shí)間:120分鐘滿(mǎn)分:150分)一、選擇題(本大題共12小題,每小題5分,共60分)1.原點(diǎn)和點(diǎn)(1,1)在直線x+y=a兩側(cè),則a的取值范圍是()A.a(chǎn)2B.0a2C.a(chǎn)=0或a=2
2025-02-07 06:44
【摘要】人教版高中數(shù)學(xué)必修5第三章不等式單元測(cè)試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)5、不等式的解集是()A{x|-1<x<3}B{x|x>3或x<-1}C{x|-3<x<1}
2025-08-10 00:06
【摘要】§基本不等式2abab??教學(xué)目標(biāo):1、知識(shí)與技能目標(biāo):(1)掌握基本不等式2abab??,認(rèn)識(shí)其運(yùn)算結(jié)構(gòu);(2)了解基本不等式的幾何意義及代數(shù)意義;(3)能夠利用基本不等式求簡(jiǎn)單的最值。2、過(guò)程與方法目標(biāo):(1)經(jīng)歷由幾何圖形抽象出基本不等式的過(guò)程;(2)體驗(yàn)數(shù)形結(jié)合思想。
2025-01-22 08:01
【摘要】一對(duì)一個(gè)性化輔導(dǎo)教案課題不等式復(fù)習(xí)教學(xué)重點(diǎn)不等式求最值、線性規(guī)劃教學(xué)難點(diǎn)不等式求最值的方法教學(xué)目標(biāo)1、掌握基本不等式的應(yīng)用條件;2、熟悉基本不等式的常見(jiàn)變形。教學(xué)步驟及教學(xué)內(nèi)容一、課前熱身:回顧上次課內(nèi)容二、內(nèi)容講解:1、基本不等式的形式;2、基本不等式的應(yīng)用條
2025-06-04 12:39
【摘要】高中數(shù)學(xué)必修5__第三章《不等式》復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與練習(xí)(一)第一節(jié)不等關(guān)系與不等式[知識(shí)能否憶起]1.實(shí)數(shù)大小順序與運(yùn)算性質(zhì)之間的關(guān)系a-b>0?a>b;a-b=0?a=b;a-b<0?a<b.2.不等式的基本性質(zhì)性質(zhì)性質(zhì)內(nèi)容注意對(duì)稱(chēng)性ab?bb,bc?ac?可加性a>
【摘要】均值不等式如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.指出定理適用范圍:Rba?,2.強(qiáng)調(diào)取“=”的
2025-04-14 05:16
【摘要】一元二次不等式第1課時(shí)概念:一元二次方程:ax2+bx+c=0二次函數(shù):y=ax2+bx+c一元二次不等式:ax2+bx+c0a≠0x2-6x+80②一元二次不等式:一元二次方程:x2-6x+8=0③y=x2-6x+8④24
2025-01-20 23:32
【摘要】《不等關(guān)系與不等式》教學(xué)目標(biāo)?1.使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,能列出不等式與不等式組.?2.學(xué)習(xí)如何利用不等式表示不等關(guān)系,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;?3.通過(guò)學(xué)生在學(xué)習(xí)過(guò)程中的感受、體驗(yàn)、認(rèn)識(shí)狀況及理解程度,注重問(wèn)題情境、實(shí)際背景的設(shè)置,
【摘要】第3章不等式(B)(時(shí)間:120分鐘滿(mǎn)分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.若a1,y1,且14lnx,14,lny成等比
2025-02-06 22:29
【摘要】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個(gè)實(shí)數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
【摘要】不等關(guān)系與不等式1.甲、乙兩人同時(shí)從A到B.甲一半路程步行,一半路程跑步;乙一半時(shí)間步行,一半時(shí)間跑步.如果兩人步行速度、跑步速度均相同,則()A.甲先到BB.乙先到BC.兩人同時(shí)到BD.誰(shuí)先到無(wú)法確定2.設(shè),不等式能成立的個(gè)數(shù)為()A.0B.1C.
2025-02-05 03:12
【摘要】陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué)第三章不等關(guān)系與不等式1典型例題素材北師大版必修5【例1】已知a|b|;(4)a2b2;(5);(6).【例2】設(shè)f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類(lèi)討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類(lèi)方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類(lèi),即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類(lèi)討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-05-22 05:10