【摘要】等比數(shù)列的前n項(xiàng)和第一課時::an=amqn-m2.通項(xiàng)公式:an=a1qn-1等比數(shù)列要點(diǎn)整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2025-01-21 12:17
【摘要】等比數(shù)列的概念一.填空題(1).111,,369(2).lg3,lg9,lg27(3).6,8,10(4).3,33,9???na中,32a?,864a?,那么它的公比q???na是等比數(shù)列,na0,又知
2025-01-18 17:58
【摘要】等比數(shù)列的前n項(xiàng)和第二課時一、復(fù)習(xí)等比數(shù)列的前n項(xiàng)和公式:1(1)(1)1????nnaqSqq1(1)1????nnaaqSqq由an=a1qn-1代入可得特別地,當(dāng)q=1時,Sn=na1注意:“錯位相減法”的過程
2025-01-20 19:50
【摘要】第一篇:高中數(shù)學(xué)新人教B版必修5 (1) 教學(xué)目標(biāo) 1.掌握等比數(shù)列的前n項(xiàng)和公式及公式證明思路. 2.;啟發(fā)引導(dǎo)式教學(xué)法 教學(xué)過程(I)復(fù)習(xí)回顧(1)定義:(2)等比數(shù)列通項(xiàng)公式:(3)等...
2024-11-05 04:43
【摘要】等比數(shù)列的前n項(xiàng)和(第一課時)創(chuàng)設(shè)情境明總:在一個月中,我第一天給你一萬,以后每天比前一天多給你一萬元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個月,三個月那該多好啊!果真如此嗎?創(chuàng)設(shè)情境請你們幫林總分析一下
2025-01-20 15:04
【摘要】等比數(shù)列的前n項(xiàng)和(第1課時)學(xué)習(xí)目標(biāo)掌握等比數(shù)列的前n項(xiàng)和公式及公式證明思路.會用等比數(shù)列的前n項(xiàng)和公式解決一些有關(guān)等比數(shù)列的簡單問題.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境傳說國際象棋的發(fā)明人是印度的大臣西薩·班·達(dá)依爾,舍罕王為了表彰大臣的功績,準(zhǔn)備對大臣進(jìn)行獎賞.國王問大臣:“你
2025-02-10 20:21
【摘要】等比數(shù)列的前n項(xiàng)和(第2課時)學(xué)習(xí)目標(biāo)掌握等比數(shù)列的前n項(xiàng)和公式,能用等比數(shù)列的前n項(xiàng)和公式解決相關(guān)問題.通過等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情
2025-02-11 03:41
【摘要】第一頁,編輯于星期六:點(diǎn)三十四分。,2.5等比數(shù)列的前n項(xiàng)和第一課時等比數(shù)列前n項(xiàng)和公式,第二頁,編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十四分。,第四...
2024-10-22 18:54
【摘要】等比數(shù)列測試題A組一.填空題(本大題共8小題,每小題5分,共40分)1.在等比數(shù)列{}na中,3620,160aa??,則na=.1.20×:q3=16020=8,q==20×2n-3.,首項(xiàng)為98,末項(xiàng)為13,公比為23,則
2025-02-07 09:21
【摘要】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項(xiàng)公式;3.等比數(shù)列的中項(xiàng)公式;4.等比數(shù)列的下標(biāo)公式。問題探究????。和項(xiàng)的前,請推導(dǎo)等比數(shù)列公比為,中,前項(xiàng)為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
2025-01-21 08:10
【摘要】知識回顧等比數(shù)列{an}的求和公式及推導(dǎo)方法。問題探究??也成等比數(shù)列。,,求證:,項(xiàng)和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項(xiàng)的和,那么它前項(xiàng)的和等于,前項(xiàng)和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關(guān)系?并,,
【摘要】主講老師:陳震等比數(shù)列的前n項(xiàng)和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-02-24 11:53
【摘要】第7課時等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩·班·達(dá)依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格
2025-02-10 02:37
【摘要】等比數(shù)列的前n項(xiàng)和(二)課時目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時,Sn=______________=_____;當(dāng)q=1時,Sn=____________.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S
2025-02-07 10:13
【摘要】2.等比數(shù)列的前n項(xiàng)和1.(1)等比數(shù)列的前n項(xiàng)和公式:當(dāng)q≠1時,Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當(dāng)q=1時,Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項(xiàng)和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2025-02-10 13:12