【摘要】摘要隨著信息科技的高速發(fā)展,人們對(duì)于積累的海量數(shù)據(jù)量的處理工作也日益增重,需求是發(fā)明之母,數(shù)據(jù)挖掘技術(shù)就是為了順應(yīng)這種需求而發(fā)展起來(lái)的一種數(shù)據(jù)處理技術(shù)。數(shù)據(jù)挖掘技術(shù)又稱(chēng)數(shù)據(jù)庫(kù)中的知識(shí)發(fā)現(xiàn),是從一個(gè)大規(guī)模的數(shù)據(jù)庫(kù)的數(shù)據(jù)中有效地、隱含的、以前未知的、有潛在使用價(jià)值的信息的過(guò)程。決策樹(shù)算法是數(shù)據(jù)挖掘中重要的分類(lèi)方法,基于決策樹(shù)的各種算法在執(zhí)行速度、可擴(kuò)展性、輸出結(jié)果的可理解性、分類(lèi)預(yù)測(cè)
2024-08-06 10:13
【摘要】決策樹(shù)決策樹(shù)研發(fā)二部武漢中原電子信息有限公司文件狀態(tài):[]草稿[]正式發(fā)布[]正在修改文件標(biāo)識(shí):當(dāng)前版本:作者:張宏超完成日期:2019年3月8日目錄1. 算法介紹 1. 分支節(jié)點(diǎn)選取 1. 構(gòu)建樹(shù) 3. 剪枝 102.
2024-09-15 03:21
【摘要】分類(lèi)與決策樹(shù)概述分類(lèi)與預(yù)測(cè)分類(lèi)是一種應(yīng)用非常廣泛的數(shù)據(jù)挖掘技術(shù),應(yīng)用的例子也很多。例如,根據(jù)信用卡支付歷史記錄,來(lái)判斷具備哪些特征的用戶(hù)往往具有良好的信用;根據(jù)某種病癥的診斷記錄,來(lái)分析哪些藥物組合可以帶來(lái)良好的治療效果。這些過(guò)程的一個(gè)共同特點(diǎn)是:根據(jù)數(shù)據(jù)的某些屬性,來(lái)估計(jì)一個(gè)特定屬性的值。例如在信用分析案例中,根據(jù)用戶(hù)的“年齡”、“性別”、“收入水平”、“職業(yè)”等屬性的值,來(lái)估計(jì)該
2024-09-15 03:50
【摘要】決策樹(shù)-上武承羲內(nèi)容決策樹(shù)基礎(chǔ)經(jīng)典決策樹(shù)剪枝決策樹(shù)決策樹(shù):用來(lái)表示決策和相應(yīng)的決策結(jié)果對(duì)應(yīng)關(guān)系的樹(shù)。樹(shù)中每一個(gè)非葉節(jié)點(diǎn)表示一個(gè)決策,該決策的值導(dǎo)致不同的決策結(jié)果(葉節(jié)點(diǎn))或者影響后面的決策選擇。示例:天氣風(fēng)陽(yáng)光不玩玩不玩玩玩雨
2025-02-25 02:49
【摘要】決策樹(shù)算法及應(yīng)用拓展?內(nèi)容簡(jiǎn)介:?概述?預(yù)備知識(shí)?決策樹(shù)生成(BuildingDecisionTree)?決策樹(shù)剪枝(PruningDecisionTree)?捕捉變化數(shù)據(jù)的挖掘方法?小結(jié)概述(一)?傳統(tǒng)挖掘方法的局限性?只重視從數(shù)據(jù)庫(kù)中提取規(guī)則,忽視了庫(kù)中數(shù)據(jù)的變化?挖掘
2025-02-15 19:43
【摘要】數(shù)據(jù):weka中的weather數(shù)據(jù)(字符型、數(shù)值型)outlook,temperature,humidity,windy,playsunny,hot,high,FALSE,nosunny,hot,high,TRUE,noovercast,hot,high,FALSE,yesrainy,mild,high,FALSE,yesrainy,cool
2025-02-15 19:39
2025-04-10 11:52
2025-02-14 19:37
【摘要】決策樹(shù)決策樹(shù)簡(jiǎn)介決策樹(shù)算法A1,A2兩方案投資分別為450萬(wàn)和240萬(wàn),經(jīng)營(yíng)年限為5年,銷(xiāo)路好的概率為,銷(xiāo)路差的概率為,A1方案銷(xiāo)路好年、差年的損益值分別為300萬(wàn)和負(fù)60萬(wàn),A2方案分別為120萬(wàn)和30萬(wàn)。決策樹(shù)簡(jiǎn)介決策樹(shù)簡(jiǎn)介決策狀態(tài)狀態(tài)結(jié)結(jié)
2025-02-25 02:52
2025-04-10 11:31
【摘要】第三章決策樹(shù)決策樹(shù)(DecisionTree)是在已知各種情況發(fā)生概率的基礎(chǔ)上,通過(guò)構(gòu)成決策樹(shù)來(lái)求取凈現(xiàn)值的期望值大于等于零的概率,評(píng)價(jià)項(xiàng)目風(fēng)險(xiǎn),判斷其可行性的決策分析方法,是直觀(guān)運(yùn)用概率分析的一種圖解法。由于這種決策分支畫(huà)成圖形很像一棵樹(shù)的枝干,故稱(chēng)決策樹(shù)。在機(jī)器學(xué)習(xí)中,決策樹(shù)是一個(gè)預(yù)測(cè)模型,他代表的是對(duì)象屬性與對(duì)象值之間的一種映射關(guān)系。Entropy=系統(tǒng)的凌亂程度,使用算法ID
2025-08-04 03:55
2025-02-28 01:11
【摘要】數(shù)學(xué)與計(jì)算機(jī)學(xué)院課程名稱(chēng):模式識(shí)別題目:決策樹(shù)任課老師:王類(lèi)年級(jí)專(zhuān)業(yè):2022級(jí)應(yīng)用數(shù)學(xué)姓名:閆輝時(shí)間:
2025-02-25 09:24
【摘要】風(fēng)險(xiǎn)型決策?最大概率法、收益期望值法、決策樹(shù)法★決策樹(shù)法?將損益期望值法中的各個(gè)方案的情況用一個(gè)概率樹(shù)來(lái)表示,就形成了決策樹(shù)。它是模擬樹(shù)木生長(zhǎng)的過(guò)程,從出發(fā)點(diǎn)開(kāi)始不斷分枝來(lái)表示所分析問(wèn)題的各種發(fā)展可能性,并以各分枝的損益期望值中的最大者作為選擇的依據(jù)。?決策樹(shù)的畫(huà)法、決策樹(shù)的例子?例題8、例題9、例題10決
2025-02-14 19:35