【摘要】專(zhuān)業(yè)資料分享人說(shuō)幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,
2025-05-11 12:33
【摘要】專(zhuān)業(yè)資料分享【2013年中考攻略】專(zhuān)題7:幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過(guò)適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡(jiǎn)單的新圖形,則能使原問(wèn)題的本質(zhì)得到充分的顯示,通過(guò)對(duì)新圖形的分析,原問(wèn)題順利獲解
2025-07-03 02:07
【摘要】200*1504K282*2829K329*24510K????295*24610K329*24510K333*2909K????365*26710K400*34814K
2025-06-01 02:46
【摘要】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-12-25 17:05
【摘要】第一篇:初中教你如何做幾何輔助線 初中幾何輔助線做法 三角形 圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段...
2024-10-24 21:17
【摘要】幾何輔助線練習(xí)之旋轉(zhuǎn)類(lèi)旋轉(zhuǎn)技巧同步訓(xùn)練題
2024-08-04 15:21
【摘要】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱(chēng)以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13
【摘要】論文標(biāo)題:淺談初中幾何中添加輔助線的技巧作者:鄺淑瑩單位:三水中學(xué)附屬初中日期:2021-8-25聯(lián)系電話:15024263134淺談初中幾何中添加輔助線的技巧三水中學(xué)附屬初中數(shù)學(xué)科組鄺淑瑩摘要:在初中數(shù)學(xué)的學(xué)習(xí)中,平面幾何無(wú)疑占據(jù)著十
2024-08-03 06:58
2024-12-13 10:22
【摘要】中考幾何題證明思路總結(jié)一、證明兩線段相等 。 。 。 。 。 ?!??!?。二、證明兩角相等 。 ?! ?,底邊上的中線(或高)平分頂角?! ?、內(nèi)錯(cuò)角或平行四邊形的對(duì)角相等?! 。ɑ虻冉牵┑挠嘟牵ɑ蜓a(bǔ)角)相等。 ?。ɑ驁A)中,等弦(或?。┧鶎?duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。三、證
2025-05-11 12:34
【摘要】第一篇:初中數(shù)學(xué)幾何證明題作輔助線的技巧 人說(shuō)幾何很困難,難點(diǎn)就在輔助線。初中數(shù)學(xué)幾何證明題輔助線怎么畫(huà)? 輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊...
2024-10-28 22:46
【摘要】無(wú)為三中八年級(jí)數(shù)學(xué)專(zhuān)題學(xué)習(xí)幾何證明中常見(jiàn)的“添輔助線”方法(2022年安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個(gè)就能推出△ABC是等腰三角形的是_________________。(把所有正確答案的序號(hào)都填寫(xiě)在橫線上)①∠BA
2025-06-23 12:02
【摘要】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過(guò)適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡(jiǎn)單的新圖形,則能使原問(wèn)題的本質(zhì)得到充分的顯示,通過(guò)對(duì)新圖形的分析,原問(wèn)題順利獲解。有許多初中幾何常見(jiàn)輔助線作法歌訣,下面這一套是很好的:人說(shuō)幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-05-22 03:02
【摘要】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關(guān)鍵,如何準(zhǔn)確地作出需要的輔助線,簡(jiǎn)單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點(diǎn),F(xiàn)是BE延長(zhǎng)線與AC的交點(diǎn),求證:AF=分析:題設(shè)中含有D是BC中點(diǎn),E是AD中點(diǎn),由此可以聯(lián)想到三角形中與邊中點(diǎn)有密切聯(lián)
2024-07-29 13:03
【摘要】常見(jiàn)的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長(zhǎng)度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一
2025-05-11 02:14