【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束高階線性微分方程解的結(jié)構(gòu)第七節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第十二章n階線性微分方程的一般形式為方程的共性為二階線性微分方程.例1例2,)()()(xfyxqyxpy?
2025-07-13 16:10
【摘要】(AdvancedMathematics)?CSMyzx0?P導(dǎo)數(shù)與微分2習(xí)題課(Ⅲ)高階導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分3??????????????????????導(dǎo)數(shù)定義幾何意義可導(dǎo)性與連續(xù)性的
2025-06-22 22:04
【摘要】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來求解??山惦A的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)相當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
2025-07-15 17:48
【摘要】第十章微分方程第六節(jié)可降階的高階微分方程一、型的微分方程二、型的微分方程三、型的微分方程一、)()(xfyn?令,)1(??nyz因此1d)(Cxxfz???即
2025-07-17 21:59
【摘要】上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院1第4章微分方程與差分方程上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院2在科學(xué)技術(shù)和經(jīng)濟(jì)管理等許多實(shí)際問題中,系統(tǒng)中的變量間往往可以表示成一個(gè)(組)微分方程或差分方程,它們是兩類不同的方程,前者處理的量的離散變量,間隔時(shí)間周期作為統(tǒng)計(jì)的.動(dòng)態(tài)
2025-07-17 06:04
【摘要】可降階的高階微分方程1小結(jié)思考題作業(yè))()(xfyn?型的方程),(yxfy????型的方程),(yyfy????型的方程可降階的高階微分方程第5章微分方程應(yīng)用可降階的高階微分方程2)()(xfyn?一、
2025-06-16 05:40
【摘要】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來求解??山惦A的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)腥當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-06-16 06:42
【摘要】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級(jí)數(shù)解法。對(duì)于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-12-06 17:11
【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-07-10 03:56
【摘要】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點(diǎn):一.一階、二階偏導(dǎo)數(shù)計(jì)算三.熟練掌握偏導(dǎo)數(shù)
2025-03-03 07:37
【摘要】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁下頁返回
2025-07-15 21:33
【摘要】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)?一、偏導(dǎo)數(shù)的定義及其計(jì)算法?二、高階偏導(dǎo)數(shù)定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf?
2025-06-24 22:29
【摘要】1高階導(dǎo)數(shù)的定義萊布尼茨(Leibniz)公式小結(jié)思考題作業(yè)§高階導(dǎo)數(shù)第二章導(dǎo)數(shù)與微分幾個(gè)基本初等函數(shù)的n階導(dǎo)數(shù)2問題:變速直線運(yùn)動(dòng)的加速度.),(tss?設(shè))()(tstv??則瞬時(shí)速度為是加速度a???)(ta定義)()(xfxf?的導(dǎo)數(shù)如果函數(shù)
2025-03-06 09:00
【摘要】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第二章導(dǎo)數(shù)與微分高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》問題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftv
2025-06-24 12:10