【摘要】二次函數(shù)專題復(fù)習(xí)考點一 二次函數(shù)的概念一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù).注意:(1)二次項系數(shù)a≠0;(2)ax2+bx+c必須是整式;(3)一次項可以為零,常數(shù)項也可以為零,一次項和常數(shù)項可以同時為零;(4)自變量x的取值范圍是全體實數(shù).考點二 二次函數(shù)的圖象及性質(zhì)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a
2025-06-03 13:00
【摘要】......二次函數(shù)平行四邊形存在性問題例題一.解答題(共9小題)1.如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.(1)求拋物線的解析式;(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,
2025-05-11 06:26
【摘要】......老師姓名學(xué)生姓名學(xué)管師學(xué)科名稱年級上課時間月日__:00--__:00課題名稱二次函數(shù)與平行四邊形的存
2025-05-11 06:24
【摘要】人教版數(shù)學(xué)初三中考復(fù)習(xí) 二次函數(shù)專題練習(xí)題一、選擇題1拋物線y=x2+2x+3的對稱軸是()A.直線x=1B.直線x=-1C.直線x=-2D.直線x=22.在平面直角坐標(biāo)系中,將拋物線y=x2-x-6向上(下)或向左(右)平移m個單位,使平移后的拋物線恰好經(jīng)過原點,則|m|的最小值為()A.1B.2C.3
2025-03-02 23:25
【摘要】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,過點作軸的平行線與拋物線交于點,拋物線的頂點為,直線經(jīng)過、兩點.(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計算出這兩個角的大小,那么他們之間的大小關(guān)系就清楚了b
【摘要】數(shù)學(xué)二次函數(shù)及其應(yīng)用一、填空題:1、拋物線y=-x2+1的開口向____。2、拋物線y=2x2的對稱軸是____。3、函數(shù)y=2(x-1)2圖象的頂點坐標(biāo)為____。4、將拋物線y=2x2向下平移2個單位,所得的拋物線的解析式為________。5、函數(shù)y=x2+bx+3的圖象經(jīng)過點(-1,
2025-01-15 02:03
【摘要】用心愛心專心1初中數(shù)學(xué)二次函數(shù)復(fù)習(xí)專題〖知識點〗二次函數(shù)、拋物線的頂點、對稱軸和開口方向〖大綱要求〗1.理解二次函數(shù)的概念;2.會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標(biāo)、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;3.會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2
2025-01-25 03:15
【摘要】2018秋季--周家樂第1-3講二次函數(shù)全章綜合提高【知識清單】※一、網(wǎng)絡(luò)框架※二、清單梳理1、一般的,形如的函數(shù)叫二次函數(shù)。例如等都是二次函數(shù)。注意:系數(shù)不能為零,可以為零。2、二次函數(shù)的三種解析式(表達(dá)式)①一般式:②頂點式:,頂點坐標(biāo)為③交點式:3、二次函數(shù)的圖像位置與系數(shù)之間的關(guān)系①:決定拋物線的開口方向及開口的大小。當(dāng)時,開
2025-06-03 12:39
【摘要】初三數(shù)學(xué)培優(yōu)講義幫邦教育 二次函數(shù)專題復(fù)習(xí)專題一:二次函數(shù)的圖象與性質(zhì)本專題涉及二次函數(shù)概念,二次函數(shù)的圖象性質(zhì),、選擇題為主,也有少量的解答題出現(xiàn).二次函數(shù)的圖象是一條拋物線,它的對稱軸是直線x
2025-06-03 13:10
【摘要】中考二次函數(shù)專題復(fù)習(xí)知識點歸納:一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1.
2025-06-03 12:57
【摘要】........二次函數(shù)與三角形的存在性問題一、預(yù)備知識1、坐標(biāo)系中或拋物線上有兩個點為P(x1,y),Q(x2,y)(1)線段對稱軸是直線(2)AB兩點之間距離公式:中點公式:已知兩點,則線段
【摘要】范文范例學(xué)習(xí)指導(dǎo)二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標(biāo)為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關(guān)于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.(1)求拋物線的解析式;(2)填空:①用含m
2024-09-15 01:44
【摘要】....二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標(biāo)為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關(guān)于直線PB的對稱點為D,連接CD,
【摘要】2017-2018學(xué)年九年級數(shù)學(xué)上冊期末復(fù)習(xí)--二次函數(shù)一 、選擇題二次函數(shù)y=(x-1)2+2的最小值是()A.2 B.1 C.-1 D.-2若二次函數(shù)y=x2+bx+5配方后為y=(x-2)2+k,則b,k的值分別為()A.0,5 B.0,1 C.-4,5 D.-4,1已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2
2025-08-10 13:56
【摘要】........二次函數(shù)中直角三角形存在性問題1.找點:在已知兩定點,確定第三點構(gòu)成直角三角形時,要么以兩定點為直角頂點,,構(gòu)造兩條直線與已知直線垂直;以動點為直角頂點時,以已知線段為直徑構(gòu)造圓找點2.方法:以兩定點為直角