【摘要】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個(gè)三角形叫做全等三角形,全等三角形的對(duì)應(yīng)邊____,對(duì)應(yīng)角____.2.兩個(gè)三角形只有一組或兩組對(duì)應(yīng)相等的元素,這兩個(gè)三角形全等;兩個(gè)三角形有三組對(duì)應(yīng)相等的元素,這兩個(gè)三角形
2025-01-12 04:27
【摘要】三角形全等的條件⑵先任意畫出一個(gè)△ABC,再畫一個(gè)△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐??探?已知:任意△ABC,畫一個(gè)△A/B/C/,使A/B/=AB,∠A/=∠A,A
2025-01-09 13:41
【摘要】數(shù)學(xué)·八年級(jí)·上冊(cè)第十三章全等三角形湛江第一中學(xué)金沙灣學(xué)校林創(chuàng)三角形全等的判定問題:如何才能確定兩個(gè)三角形全等呢?提示:可以從以下幾個(gè)方面去考慮1、定義2、角3、邊4、邊和角
2025-01-09 18:15
【摘要】創(chuàng)設(shè)情節(jié),提出問題下列各組圖形的形狀與大小有什么特點(diǎn)?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個(gè)三角形叫做全等三角形小試身手下列說法是否正確,并簡(jiǎn)要說明理由:(1)邊長(zhǎng)相等的正方形都是全等圖形;(2)同一面中華人民共和國(guó)國(guó)旗上,
2024-08-28 09:49
【摘要】全等三角形下列各組圖形的形狀與大小有什么特點(diǎn)?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個(gè)三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長(zhǎng)相等的正方形都是全等圖形;(2)同一面中華人民共和國(guó)國(guó)旗上,4個(gè)小五角星
2024-09-11 17:35
【摘要】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長(zhǎng)構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2025-01-12 22:05
【摘要】三角形全等的條件(復(fù)習(xí))全等三角形概念及性質(zhì):1:什么是全等三角形?一個(gè)三角形經(jīng)過哪些變化可以得到它的全等形?2:全等三角形有哪些性質(zhì)?能夠完全重合的兩個(gè)三角形叫做全等三角形。一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。(1):全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。(2):全等三角形的周長(zhǎng)相等、面積相等。(3)
2024-08-28 00:05
【摘要】三角形全等(復(fù)習(xí))全等三角形(1)兩個(gè)能夠完全重合的三角形叫全等三角形,(2)全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等。(3)判定兩個(gè)三角形全等的公理或定理:①一般三角形有SSS、SAS、ASA、AAS②千萬不要將SSA條件作為SAS條件來用。知識(shí)點(diǎn)三角形全等的證題思
2025-01-10 02:32
【摘要】全等三角形泰安六中蘇曉林1、理解全等三角形的概念,能識(shí)別全等三角形中的對(duì)應(yīng)邊、對(duì)應(yīng)角。2、理解全等三角形的性質(zhì);掌握兩個(gè)三角形全等的條件;3、會(huì)用全等三角形的進(jìn)行角、線段的有關(guān)計(jì)算和證明。從近幾年的中考題來看,全等三角形占有重要的地位。時(shí)間全等三角形相關(guān)題型分值(分)
2025-03-01 23:17
【摘要】三角形全等的判定復(fù)習(xí)課三角形全等的定義及性質(zhì)定義:能夠完全重合的兩個(gè)三角形全等性質(zhì):兩個(gè)全等的三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角分別相等教學(xué)內(nèi)容一、三角形全等的定義二、三角形全等的判斷定理(SAS)(ASA)推論角角邊(AAS)(SSS)4.“HL”定理三、應(yīng)用四、小結(jié)
2025-01-10 01:04
【摘要】例:已知,如圖,AB=AC,DB=DC,F是AD的延長(zhǎng)線上的一點(diǎn),試說明:BF=CF.擴(kuò)散一:已知:如圖,AB=AC,DB=DC,F是AD延長(zhǎng)線上一點(diǎn),且B,F,C在一條直線上,試說明:F是BC的中點(diǎn).擴(kuò)散二:已知:如圖,AB=AC,DB=DC,F是AD上的一點(diǎn),試說明:BF=CF.擴(kuò)散三:已知:如
【摘要】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請(qǐng)根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此迹沂崂怼浚ㄒ唬┫嗨迫切?.定義:各角對(duì)應(yīng)________,各邊對(duì)應(yīng)成________的兩個(gè)三角形叫做相似三角形.2.判定(1)平行于三角
2025-01-27 14:14
【摘要】......澤仕學(xué)堂學(xué)科教師輔導(dǎo)講義學(xué)員姓名:錢偉杰輔導(dǎo)科目:數(shù)學(xué)年級(jí):初一學(xué)科教師:張先安授課日期及時(shí)段課題三角形全等重點(diǎn)、難點(diǎn)、考點(diǎn)
2025-06-03 23:03
【摘要】全等三角形總結(jié)A.考點(diǎn)精析、重點(diǎn)突破、學(xué)法點(diǎn)撥“全等四解”全等三角形是初中平面幾何的重要內(nèi)容,它為解決線段以及角的相等問題提供了重要工具,也為以后的學(xué)習(xí)奠定了必要的基礎(chǔ),因此要學(xué)好平面幾何,必須重視全等三角形的學(xué)習(xí).那么怎樣才能學(xué)好它呢?本文談四點(diǎn)意見,供同學(xué)們學(xué)習(xí)時(shí)參考.組成全等三角形的基本圖形大致有以下幾種:①平移型,如圖中的兩種圖形屬于平移型,它們可看
2025-06-03 23:02
【摘要】全等三角形綜合復(fù)習(xí)知識(shí)點(diǎn)一:證明三角形全等的思路通過對(duì)問題的分析,將解決的問題歸結(jié)到證明某兩個(gè)三角形的全等后,采用哪個(gè)全等判定定理加以證明,可以按下圖思路進(jìn)行分析:切記:“有三個(gè)角對(duì)應(yīng)相等”和“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。思路分析:從結(jié)論入手,全等條件只有;由兩邊同時(shí)減去得到,又得到一個(gè)全等條件。還缺
2025-07-25 15:01