【摘要】雙基限時練(二十)一、選擇題1.不等式-6x2-x+2≤0的解集為()A.{x|-23≤x≤12}B.{x|x≤-23,或x≥12}C.{x|x≥12}D.{x|x≤-23}解析由-6x2-x+2≤0,得6x2+x-2≥0,x≥12或x≤-23.答案B2.
2025-02-06 23:46
【摘要】雙基限時練(二十六)一、選擇題1.設變量x,y滿足約束條件?????x≥0,y≥0,x+y≤1,則目標函數(shù)z=x+2y的最大值為()A.0B.1C.2D.3解析不等式組表示的平面區(qū)域如圖所示,當z=x+2y過(0,1)時z取得最大值2.答案C
2025-02-06 20:39
【摘要】高中數(shù)學必修5__第三章《不等式》復習知識點總結與練習(一)第一節(jié)不等關系與不等式[知識能否憶起]1.實數(shù)大小順序與運算性質之間的關系a-b>0?a>b;a-b=0?a=b;a-b<0?a<b.2.不等式的基本性質性質性質內容注意對稱性ab?bb,bc?ac?可加性a>
2025-06-04 12:39
【摘要】第三章章末檢測(A)(時間:120分鐘滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分)1.原點和點(1,1)在直線x+y=a兩側,則a的取值范圍是()A.a2B.0a2C.a=0或a=2
2025-02-07 06:44
【摘要】§基本不等式2abab??教學目標:1、知識與技能目標:(1)掌握基本不等式2abab??,認識其運算結構;(2)了解基本不等式的幾何意義及代數(shù)意義;(3)能夠利用基本不等式求簡單的最值。2、過程與方法目標:(1)經歷由幾何圖形抽象出基本不等式的過程;(2)體驗數(shù)形結合思想。
2025-01-22 08:01
【摘要】一對一個性化輔導教案課題不等式復習教學重點不等式求最值、線性規(guī)劃教學難點不等式求最值的方法教學目標1、掌握基本不等式的應用條件;2、熟悉基本不等式的常見變形。教學步驟及教學內容一、課前熱身:回顧上次課內容二、內容講解:1、基本不等式的形式;2、基本不等式的應用條
【摘要】第三章測試(時間:120分鐘滿分:150分)一、選擇題(5×10=50分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.已知集合M={x|x23
2025-02-07 01:55
【摘要】第三章綜合檢測(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每個小題5分,共60分,每小題給出的四個備選答案中,有且僅有一個是符合題目要求的)1.a、b∈R下列命題正確的是()A.若a>b,則a2>b2B.若|a|>b,則a2>b2C.若a>|
2025-01-31 00:02
【摘要】第三章直線與方程1、直線傾斜角的概念:當直線l與x軸相交時,取x軸作為基準,,當直線l與x軸平行或重合時,規(guī)定α=0°.2、傾斜角α的取值范圍:0°≤α<180°.當直線l與x軸垂直時,α=90°.3、直線的斜率:⑴一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,常用小寫字
2025-05-22 05:09
【摘要】[基礎訓練A組]一、選擇題1.若,則等于()A.B.C.3D.2.函數(shù)y=log(x++1)(x1)的最大值是()A.-2B.2C.-3D.33.不等式≥1的解集是()A.{x|≤x≤2}B.{x|≤x<2}C.{x|x>2或x≤}D.{x|x<2}4.設a>1>b>-
2024-08-07 17:32
【摘要】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2025-02-07 10:13
【摘要】本課時欄目開關填一填研一研練一練§(一)學習要求1.理解均值不等式的內容及證明.2.能熟練運用均值不等式來比較兩個實數(shù)的大?。?.能初步運用均值不等式證明簡單的不等式.學法指導1.應用均值不等式解決有關問題必須緊扣它的適用條件,公式a2+b2≥2
2025-03-02 21:04
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-05-22 05:10
【摘要】不等關系與不等式1.甲、乙兩人同時從A到B.甲一半路程步行,一半路程跑步;乙一半時間步行,一半時間跑步.如果兩人步行速度、跑步速度均相同,則()A.甲先到BB.乙先到BC.兩人同時到BD.誰先到無法確定2.設,不等式能成立的個數(shù)為()A.0B.1C.
2025-02-05 03:12
【摘要】陜西省吳堡縣吳堡中學高中數(shù)學第三章不等關系與不等式1典型例題素材北師大版必修5【例1】已知a|b|;(4)a2b2;(5);(6).【例2】設f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤