【摘要】1認(rèn)識三角形第3課時【基礎(chǔ)梳理】三角形的三種重要線段的概念及特征(1)角平分線①概念:在三角形中,一個內(nèi)角的角平分線與它的對邊相交,該角頂點(diǎn)與交點(diǎn)之間的_____.②特征:三角形的三條角平分線交于_____.線段一點(diǎn)(2)中線①概念:連接三角形一個頂點(diǎn)與它對邊_____的線段.
2025-08-01 05:41
【摘要】第四章三角形認(rèn)識三角形第1課時三角形的內(nèi)角和◎知識梳理1.由不在同一直線上的三條線段首尾相接所組成的圖形叫做三角形.三角形有條邊,個內(nèi)角和三個頂點(diǎn).順次三三2.如圖所示的三角形用符號表示為△ABC,它的三條邊用大寫字母表示分別是AB,BC,A
2025-07-30 00:29
【摘要】第四章三角形認(rèn)識三角形第4課時三角形的高線◎知識梳理1.從三角形的一個頂點(diǎn)向它的對邊所在的直線作垂線,頂點(diǎn)和之間的線段叫做三角形的高線,簡稱三角形的高.2.三角形的三條高所在的交于一點(diǎn).垂足直線3.三角形的高不一定都在三角形的內(nèi)部.銳角三角形的三條高都在三
【摘要】第四章三角形知識點(diǎn)一三角形的有關(guān)概念:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.:組成三角形的三條線段叫做三角形的邊;相鄰兩邊的公共端點(diǎn)叫做三角形的頂點(diǎn);相鄰兩邊夾的角叫做三角形的內(nèi)角.:三角形用符號“△”表示,頂點(diǎn)是A、B、C的三角形記作“△ABC”,讀作“三角形ABC”.
2025-07-31 08:24
【摘要】第四章三角形知識點(diǎn)一三角形的有關(guān)概念:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.:組成三角形的三條線段叫做三角形的邊;相鄰兩邊的公共端點(diǎn)叫做三角形的頂點(diǎn);相鄰兩邊夾的角叫做三角形的內(nèi)角.:三角形用符號“△”表示,頂點(diǎn)是A、B、C的三角形記作“△ABC”,讀作“三角形A
2025-07-31 07:43
【摘要】第四章三角形認(rèn)識三角形第2課時三角形的三邊關(guān)系◎知識梳理1.在一個三角形中,任意兩邊之和第三邊,任意兩邊之差第三邊.上述兩條性質(zhì)的根據(jù)是:兩點(diǎn)之間,.2.有兩邊相等的三角形叫做,都相等的三角形是等邊三角形,也叫做
【摘要】第1課時3探索三角形全等的條件1.會用“邊邊邊”判定三角形全等.2.經(jīng)歷探索三角形全等條件的過程,體會利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程.△ABC與△DEF全等,則有:①AB=DE②BC=EF③CA=FD④∠A=∠D⑤∠B=∠E⑥∠C=∠FABCDEF1、什么叫全等三角
2025-08-07 22:12
【摘要】3探索三角形全等的條件第1課時【基礎(chǔ)梳理】三角形全等條件的探索【思考】:三角形___全等;三角形___全等.不不:一邊一內(nèi)角、兩內(nèi)角、兩邊時:①三角形___全等;②
2025-08-01 05:05
【摘要】第四章三角形探索三角形全等的條件第1課時“SSS”判定三角形全等◎知識梳理1.只給出一個條件或條件時,不能保證所畫出的兩個三角形一定全等.要使所畫出兩個三角形一定全等,至少需要個條件,但如果只給出三角形的三個內(nèi)角,還是不能保證得到的三角形一定全等.兩個三2.給定三角形
2025-07-30 05:43
【摘要】第四章三角形認(rèn)識三角形第3課時三角形的角平分線和中線◎知識梳理1.在三角形中,連接一個頂點(diǎn)與它對邊的的線段,叫做這個三角形的中線.2.一個三角形的中線共有,它們存在于三角形的內(nèi)部,并且三條中線相交于一點(diǎn),我們把這一點(diǎn)叫做重心.中點(diǎn)三條3.三角形中,一個內(nèi)角的角平
2025-08-01 01:19
【摘要】5利用三角形全等測距離1.會利用三角形全等測距離.2.能在解決實(shí)際問題的過程中進(jìn)行有條理的思考和表述.3.體會數(shù)學(xué)與生活的密切聯(lián)系,能夠利用三角形全等解決生活中的實(shí)際問題.?對應(yīng)邊相等,對應(yīng)角相等.?(1)“SSS”:三邊對應(yīng)相等的兩個三角形全等.(2)“ASA”:兩角和它們的夾邊對應(yīng)相
2025-08-07 22:52
【摘要】5利用三角形全等測距離【基礎(chǔ)梳理】,山腳下有A,B兩點(diǎn),要測出A,B兩點(diǎn)的距離的具體方案如下:在地上取一個可以直接到達(dá)A,B點(diǎn)的點(diǎn)O,連接AO并延長到C,使______,連接BO并延長到D,使______,再連接___,則AB=___.AO=COBO=DODCDC,是利用了全等三角形_
2025-08-01 04:06