【摘要】§1機(jī)動目錄上頁下頁返回結(jié)束導(dǎo)數(shù)第二章§高階導(dǎo)數(shù)§參數(shù)式函數(shù)與隱函數(shù)的導(dǎo)數(shù)二、高階導(dǎo)數(shù)的運(yùn)算法則§一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)一、高階導(dǎo)
2024-09-03 09:55
【摘要】目錄上頁下頁返回結(jié)束第二節(jié)一、偏導(dǎo)數(shù)概念及其計算二、高階偏導(dǎo)數(shù)偏導(dǎo)數(shù)第九章目錄上頁下頁返回結(jié)束一、偏導(dǎo)數(shù)定義及其計算法引例:研究弦在點x0處的振動速度與加速度,就是),(txu0xOxu中的
2025-03-09 00:57
【摘要】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點的二階導(dǎo)數(shù)在點的導(dǎo)數(shù)為在且稱點二階可導(dǎo)在則稱點可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-06-16 02:10
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程大學(xué)數(shù)學(xué)(三)多元微積分學(xué)第一章多元函數(shù)微分學(xué)曾金平教案編寫:劉楚中曾金平電子制作:劉楚中第一章多元函數(shù)微分學(xué)本章學(xué)習(xí)要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。
2025-06-24 12:10
【摘要】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)第二章一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-07-17 21:42
【摘要】第四節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、由參數(shù)方程確定的函數(shù)的二階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))
2025-03-08 13:44
【摘要】§高階導(dǎo)數(shù)三、參數(shù)方程表示函數(shù)的高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例四、小結(jié)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義000000
2025-03-04 17:38
【摘要】§高階導(dǎo)數(shù)、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)
【摘要】機(jī)動目錄上頁下頁返回結(jié)束高階線性微分方程解的結(jié)構(gòu)第六節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)*四、常數(shù)變易法一、二階線性微分方程舉例第七章一、二階線性微分方程舉例當(dāng)重力與彈性力抵消時,物體處于平衡狀態(tài),例1.質(zhì)量為m的物體自由懸掛
2025-06-22 12:11
【摘要】第五節(jié)高階偏導(dǎo)數(shù)本節(jié)主要講兩個問題:一、什么是高階偏導(dǎo)數(shù)二、在什么條件下混合偏導(dǎo)數(shù)相等多元函數(shù)的高階偏導(dǎo)數(shù)與一元函數(shù)的高階導(dǎo)數(shù)類似:一般情況下,函數(shù)的偏導(dǎo)數(shù)還是的函數(shù),如果的偏導(dǎo)數(shù)還存在,則稱它們的偏導(dǎo)數(shù)為的二階偏導(dǎo)數(shù).即:函數(shù)一階偏導(dǎo)數(shù)的偏導(dǎo)數(shù),稱為原來函數(shù)的二階偏導(dǎo)數(shù).函數(shù)二階偏導(dǎo)數(shù)
2025-06-17 18:09
【摘要】第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實變函
2025-03-09 03:38
【摘要】§8.高階導(dǎo)數(shù)與高階微分YunnanUniversity1一、高階導(dǎo)數(shù)及其運(yùn)算法則,其速度物體運(yùn)動規(guī)律)(tss?.lim)(0tstsvt???????一階導(dǎo)數(shù)).())(()(lim)(0tststvtvtat?????????????時間內(nèi)在t?于是,212gts?自由落
2025-07-17 22:24
2025-06-16 01:58
2025-03-02 16:23
【摘要】第二章微積分學(xué)的創(chuàng)始人:德國數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)描述函數(shù)變化快慢微分描述函數(shù)變化程度都是描述物質(zhì)運(yùn)動的工具(從微觀上研究函數(shù))導(dǎo)數(shù)與微分導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家Ferma在研究極值問題中提出.英國數(shù)學(xué)家Newton一、引例二、導(dǎo)數(shù)的定義三、導(dǎo)數(shù)的幾何意義
2024-12-06 04:38