【摘要】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實(shí)數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-05-22 05:05
【摘要】......平面向量知識點(diǎn)小結(jié)一、向量的基本概念:既有大小又有方向的量,.注意:不能說向量就是有向線段,為什么?提示:向量可以平移.舉例1已知,,則把向量按向量平移后得到的向量是_____.結(jié)果::長
2025-08-12 07:54
【摘要】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點(diǎn)構(gòu)成
2024-09-15 19:24
【摘要】......第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等
2025-08-10 01:37
【摘要】高中數(shù)學(xué)競賽講義(八)──平面向量一、基礎(chǔ)知識定義1?既有大小又有方向的量,稱為向量。畫圖時(shí)用有向線段來表示,線段的長度表示向量的模。向量的符號用兩個(gè)大寫字母上面加箭頭,或一個(gè)小寫字母上面加箭頭表示。書中用黑體表示向量,如a.|a|表示向量的模,模為零的向量稱為零向量,規(guī)定零向量的方向是
2025-05-22 05:15
【摘要】高三數(shù)學(xué)專題復(fù)習(xí)79班級:姓名:時(shí)間:平面向量的加減運(yùn)算一.知識梳理1、向量加法:設(shè),則+==作圖法:平行四邊形法則(共起點(diǎn)),三角形法則(首尾相接).2、向量減法:向量加上的相反向量叫做與的差,③作圖法:可以表示為從的終點(diǎn)指向的終點(diǎn)的向量(、有共同起點(diǎn))
2025-08-06 22:03
【摘要】平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。如:2.零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長度為一個(gè)單位長度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長度相等且方向相同的兩個(gè)向量叫相等向量,相等向量有傳
2025-08-12 08:09
【摘要】高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.3B.C.D.3.若向量滿足,且,則()A.4B.3C.2
2025-07-25 23:55
2024-09-14 23:56
【摘要】......高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.
【摘要】平面向量基礎(chǔ)知識復(fù)習(xí)必修4平面向量知識點(diǎn)小結(jié)一、向量的基本概念:既有大小又有方向的量,.注意:不能說向量就是有向線段,為什么?提示:向量可以平移.舉例1已知,,則把向量按向量平移后得到的向量是_____.結(jié)果::長度為0的向量叫零向量,記作:,規(guī)定:零向量的方向是任意的;:長度為一個(gè)單位長度的向量叫做單位向量(與共線的單位向量是);:長度相
2025-08-09 17:27
【摘要】第二章平面向量知識點(diǎn)歸納一.向量的基本概念與基本運(yùn)算1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大?。诹阆蛄浚洪L度為0的向量,記為,其方向是任意的,與任意向量平
2025-08-12 07:42
【摘要】平面向量與空間向量知識點(diǎn)對比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長度,用||或|a|表示零向量長度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長度相等,方向相同的向量叫做相等向量相反向量長度相
2025-08-06 22:59
【摘要】平面向量測試題一、選擇題:1。已知ABCD為矩形,E是DC的中點(diǎn),且=,=,則=()(A)+(B)-(C)+(D)-2.已知B是線段AC的中點(diǎn),則下列各式正確的是()(A)=-(B)=(C)=(D)=3.已知ABCDEF是正六邊形,且=,=,則=()(A)(B)(C)+(D)4.設(shè),為不共
【摘要】第二章平面向量:數(shù)學(xué)中,我們把既有大小,又有方向的量叫做向量。數(shù)量:我們把只有大小沒有方向的量稱為數(shù)量。:帶有方向的線段叫做有向線段。有向線段三要素:起點(diǎn)、方向、長度。(模):向量的大小,也就是向量的長度(或稱模),記作。:長度為0的向量叫做零向量,記作,零向量的方向是任意的。單位向量:長度等于1個(gè)單位的向量,叫做單位向量。:方向相同或相反的非零向量叫
2025-08-12 07:30