freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

熱能與動(dòng)力工程畢業(yè)論文(設(shè)計(jì))-在線瀏覽

2024-12-26 11:51本頁(yè)面
  

【正文】 平直翅片;層流流動(dòng);流動(dòng)換熱 II Numerical Study on Heat Transfer and Pressure Drop Characteristics of Plainfinned Tube ABSTRACT As plainfinned tube is an important ponent for thermal systems and refrigeration and air conditioning equipment, the study for its heat transfer performance is always a hot topics for researchers. Although its pact structure, heat transfer efficiency are lower than plate or platefin heat exchangers, plainfinned tube heat exchangers have also being widely used in the energy, chemical, oil and other industries for its many advantages which contained withstand high temperature and pressure, adptable widely, reliable, simple manufacturing, low costs and wide selection. Thus, studies for the flow and heat transfer of finned tube bundles are of great significance. Aim at the flow characteristics of plainfinned tube, this paper will study the followings: Simplely overview the study progress and present stuation of plainfinned tube,and on the basis of parative analysis the goods and bads of three research methods:experimental, analysis and numerical method. we determine use Gambitsoftware to bilud physical model for different size tube structures, and use to study the flow in the finned tube channel, then calculate the relationship between Re and Nu number,f(resistance cofficient), and analyze Re, finpitchnumber of tube rows, row spacing of fin tube(horizontal spacing and vertical spacing), the impact on the plainfinned tube39。它的任 務(wù)是促進(jìn)和適應(yīng)高熱流,以達(dá)到用最經(jīng)濟(jì)的設(shè)備來傳輸特定的熱量,用最有效的冷卻來保護(hù)高溫部件的安全運(yùn)行,以及用最高效率來實(shí)現(xiàn)能源的有效利用。而換熱器作為一種傳熱設(shè)備成為工業(yè)生產(chǎn)中不可缺少的設(shè)備 [1]。因此,換熱設(shè)備的合理設(shè)計(jì)、運(yùn)轉(zhuǎn)和改進(jìn)對(duì)于整個(gè)企業(yè)投資、金屬耗量、空間以及動(dòng)力消耗有著重要影響。采用先進(jìn)技術(shù),節(jié)能降耗,倡導(dǎo)低碳生活和綠色的生存模式,提高能源有效利用率勢(shì)在必行,正是出于這種目的,許多學(xué)者對(duì)強(qiáng)化換熱技術(shù)進(jìn)行了大量的研究,提高換熱器的換熱效率來節(jié) 約能源。 強(qiáng)化傳熱是實(shí)現(xiàn)換熱器高效、緊湊換熱的主要途徑,其基本元件的開發(fā)研究一直備受關(guān)注,各種行業(yè)對(duì)強(qiáng)化傳熱的具體要求各不相同,但歸納起來,強(qiáng)化傳熱技術(shù)總可以達(dá)到下列目的 [2]: (1) 減少初設(shè)計(jì)的傳熱面積和重量; (2) 提高現(xiàn)有換熱器的換熱能力; 2 (3) 使換熱器在較低的溫差下工作; (4) 減少換熱器的阻力,以減少換熱器運(yùn)行時(shí)的動(dòng)力消耗; (5) 提高換熱器的換熱器能力,同時(shí)使得增加的阻力不至于 太大。方法 (5)追求的目的是能夠在換熱系數(shù)和流動(dòng)阻力這兩者之間做一個(gè)較好的權(quán)衡,起到減阻強(qiáng)化傳熱的效果 [3]。這幾個(gè)目的不可能同時(shí)滿足,因?yàn)樗鼈兪窍嗷ブ萍s的,在選擇某一種強(qiáng)化技術(shù)前,必須 先根據(jù)其具體任務(wù),對(duì)設(shè)備體積、重量、投資及操作費(fèi)用進(jìn)行綜合平衡 [4]。具體說來,就是用各種異型管取代原來的光管,現(xiàn)在較常用的有螺旋橫紋(螺紋管)、橫槽紋管、波紋管、內(nèi)翅管及管內(nèi)插入強(qiáng)化物質(zhì);三是換熱設(shè)備的強(qiáng)化與用能系統(tǒng)的優(yōu)化組合,就是說按照能量的品味逐級(jí)利用,使用能的流程處于最合理的搭配,降低能耗實(shí) 現(xiàn)全系統(tǒng)的節(jié)能。因此,它們?cè)趶?qiáng)化效果、加工造價(jià)、流道通暢、使用壽命、流動(dòng)阻力等方面上都有待改進(jìn),尤其在上述諸性能的綜合性能上參差不齊,需要探索更合理的方式 [5]。對(duì)流換熱強(qiáng)化技術(shù)在氣體側(cè)的應(yīng)用要綜合考慮許多因素:首先要確定流體的流態(tài),即層流或湍流。在湍流對(duì)流換熱情況下,由于流體核心的速度場(chǎng)和溫度場(chǎng)都已經(jīng)比較均勻,對(duì)流換熱熱阻主要存在于貼壁的流體粘性底層中,因此對(duì)湍流換熱所采取的主要強(qiáng)化措施是破壞邊界層,使傳熱溫差發(fā)生在更 加貼近壁面的流體層中,增強(qiáng)換熱能力 [6]。所以,此時(shí)采用增強(qiáng)流體擾動(dòng),提高換熱系數(shù)的方法對(duì)空氣側(cè)換熱效果影響不大,增加換熱量更有效的方法應(yīng)該是擴(kuò)大換熱面積。 翅片的發(fā)展主要分為三個(gè)階段 :連續(xù)型翅片、間斷型波紋翅片和帶渦流發(fā)生器的翅片。雖然翅片類型已由平直翅片向波紋片、百葉窗、沖縫片和穿孔翅片等多種高效形式演變,平直翅片的強(qiáng)化傳熱效果不如錯(cuò)齒翅片和百葉窗翅片,但由于平翅片換熱器在結(jié)構(gòu)和制造上的簡(jiǎn)單方便、 運(yùn)用上的耐久性及其較好的適用性,到目前為止,平翅片換熱器仍是最為常用的一種翅片管式換熱器之一。采用平直翅片加強(qiáng)傳熱的機(jī)理是傳熱面積的增大和水力直徑的減小,使流體在通道中形成強(qiáng)烈的紊動(dòng),從而有效地降低了熱阻,提高了傳熱效率??梢姽芡獬崞膿Q熱仍然是制約換熱器效能的主要因素,因此,強(qiáng)化空氣側(cè)的換熱成了管翅式換熱器強(qiáng)化傳熱的重要問題。 翅片管強(qiáng)化傳熱的數(shù)值解法 隨著高速計(jì)算機(jī)的出現(xiàn)和現(xiàn)代計(jì)算技術(shù)的發(fā)展,以及湍流模型的不斷發(fā)展與完善,使用電子計(jì)算機(jī)作為模擬和實(shí)驗(yàn)的手段成為可能,從而可以用數(shù)值方法來求解流體力學(xué)和傳熱學(xué)中的各種各樣的問題。數(shù)值傳熱學(xué)求解問題的基本思想是:把原來在空間與時(shí)間坐標(biāo)中連續(xù)的物理量的場(chǎng)(如速度場(chǎng)、溫度場(chǎng)、濃度場(chǎng)等),用一系列有限個(gè)離散點(diǎn)(稱為節(jié)點(diǎn), node)上的值的集合來代替,通過一定的原則建立起這些離散點(diǎn)上變量值之間關(guān)系的代數(shù)方程(稱為離散方程, discretization equation),求解所建立起來的代數(shù)方程以獲得所求解變量的近似值 [8]。 由于翅片管結(jié)構(gòu)及各種工況因素對(duì)換熱效果的影響十分復(fù)雜,以解析方法及 實(shí)驗(yàn)方法為主要研究方法都不能滿足研究的需要,而且隨著計(jì)算機(jī)工業(yè)的進(jìn)一步發(fā)展,計(jì)算傳熱學(xué)與計(jì)算流體動(dòng)力學(xué)發(fā)揮著越來越重要的作用。與實(shí)驗(yàn)研究相比,數(shù)值解法具有以下一些優(yōu)點(diǎn) [9]: 圖 15 工程物理問題數(shù)值計(jì)算的一般步驟 6 (1) 經(jīng)濟(jì)性好。在大多數(shù)實(shí)際應(yīng)用中,計(jì)算機(jī)運(yùn)算的成本要比相應(yīng)的實(shí)驗(yàn)研究的成本低好幾個(gè)數(shù)量級(jí)。 (2) 研究周期短。一個(gè)設(shè)計(jì)者能夠在一天之內(nèi)研究出多種方案,并從中選擇最佳的設(shè)計(jì),而相應(yīng)的實(shí)驗(yàn)研究卻需要很長(zhǎng)的時(shí)間。對(duì)一個(gè)問題進(jìn)行數(shù)值求解可以得到詳盡而完備的數(shù)據(jù)。與實(shí)驗(yàn)的情況不同,在計(jì)算中幾乎沒有不能達(dá)到的位置。人們有時(shí)為了研究一種基本的物理現(xiàn)象,希望實(shí)現(xiàn)若干理想化的條件,例如:常物性、絕熱條件、流動(dòng)充分發(fā)展等等,在 數(shù)值計(jì)算中很容易實(shí)現(xiàn)這樣的一些條件和要求,而在實(shí)驗(yàn)中卻很難近似到這種理想化的條件。因?yàn)榻Y(jié)果的準(zhǔn)確度是由數(shù)學(xué)模型的精度和數(shù)值方法共同決定,因此數(shù)學(xué)模型和計(jì)算方法必須都具有良好的完善性,而且對(duì)于十分復(fù)雜的問題,數(shù)值解目前也很難獲得。 理論分析方法的優(yōu)點(diǎn)在于所得結(jié)果具有普遍性,各種影響因素清 晰可見,可以為檢驗(yàn)數(shù)值計(jì)算結(jié)果的準(zhǔn)確度提供擬合參照的依據(jù),是指導(dǎo)實(shí)驗(yàn)研究和驗(yàn)證新的數(shù)值計(jì)算方法的理論基礎(chǔ)。 實(shí)驗(yàn)測(cè)量方法是研究流動(dòng)與傳熱問題的最基本的方法,它所得到的實(shí)驗(yàn)結(jié)果是真實(shí)可信的,它是理論分析和數(shù)值方法的基礎(chǔ),一方面補(bǔ)充現(xiàn)有的結(jié)構(gòu)模型試驗(yàn)數(shù)據(jù)庫(kù),另一方面為工程設(shè)計(jì)人員提供新的技術(shù)支持,同時(shí)還可以與數(shù)值模擬的結(jié)果進(jìn)行對(duì)比來改進(jìn)試驗(yàn)設(shè)計(jì),因而其重要性不容低估。 而數(shù)值求解 (CFD)方法恰好克服了前面兩種方法的弱點(diǎn),在計(jì)算機(jī)上實(shí)現(xiàn)了一個(gè)特定的計(jì)算,就好像在計(jì)算機(jī)上做一次物理實(shí)驗(yàn)。 總之,科學(xué)技術(shù)發(fā)展到今天的階段,把實(shí)驗(yàn)測(cè)定、理論分析與數(shù)值模擬這三種研究手段有機(jī)而協(xié)調(diào)地結(jié)合起來,是研究流動(dòng)與傳熱問題的理想而有效的方法。總的來說有以下的幾種方法:一是減小換熱管的結(jié)構(gòu)尺寸,采用小管徑換熱管代替大管徑換熱管,同時(shí)減小管排橫向間距及縱向間距。屬于這種翅片的有條縫形翅片和百葉窗形翅片等。 (2) 1978 年, McQuiston 發(fā)表了第一個(gè)基于五種結(jié)構(gòu)參數(shù)(翅片間距 、管外徑為 、管排間距為 22mm、管列間距為 、管排數(shù)為 4)的平翅片換熱及壓降通用關(guān)聯(lián)式 [11]。 (4) 1991 年, Seshimo and Fujii 在迎面風(fēng)速為 ,對(duì) 21 種平翅片形換熱器進(jìn)行了研究。并提出了在工業(yè)常用 Re 數(shù)范圍內(nèi)的換熱和阻力性能通用關(guān)聯(lián)式。 (7) 1996 年以來, Wangel一直致力于翅片管的研究,對(duì)平翅片換熱器也做了大量的研
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1