【正文】
e) . 襯度的起源( Origin of image contrast) . 電鏡圖像舉例( Examples of electron microscopy photographs) 阿貝成象理論( Abby’s Theory of Image Formation) Optical Microscope Electron Microscope A B 非晶樣品( Amorphous Specimen) 晶態(tài)樣品( Crystalline Specimen) ( Electron Diffraction) . 電子衍射( Electron diffraction) . 選區(qū)電子衍射( Selected area electron diffraction (SAD)) . 相機(jī)常數(shù)( Camera constant) . 簡(jiǎn)單電子衍射花樣的標(biāo)定( Indexing of simple SAD patterns) . 衍射花樣的形狀效應(yīng)( Shape effect of diffraction patterns) . 取向關(guān)系( Orientation relationship) . 入射束方向的精確確定 ( Accurate determination of beam direction) . 復(fù)雜衍射花樣( Complicated SAD patterns) 偏移參數(shù)( Deviation parameter sg) . 電子衍射( Electron diffraction) . 選區(qū)電子衍射( Selected area electron diffraction (SAD)) . 相機(jī)常數(shù)( Camera constant) Ll 叫作相機(jī)常數(shù) , 且 dhkl = Ll /R’ 簡(jiǎn)單 SAD花樣的標(biāo)定( Indexing of simple SAD patterns) ( Trier and error: ) 已知相機(jī)常數(shù)法( Known camera constant) 標(biāo)準(zhǔn)衍射譜法( Standard diffraction patterns) 計(jì)算機(jī)標(biāo)定法( Computer simulation) 000 h1k1l1 h2k2l2 h3k3l3 a R1 R2 R3 22222221212121221 )( lkh lkhNNRR ?? ????222222212121212121c oslkhlkhllkkhh???????a fcc : N=3, 4, 8, 11, 12, 16, 19,……. bcc : N= 2, 4, 6, 8, 10, ……. B = R1 x R2 (1) Photograph A is from one grain of a thin foil of airon. Choose one spot as the origin and measure the distance of a number of adjacent spots from it. It is always helpful to make a reasonable sketch of the pattern and to label the spots. From the ratio of the distances between the origin and the measured spots, and the known possibilities for values of , assign a consistent set of indices to all the spots and hence determine the indices of the direction of the electron beam. Given that the unit cell dimension of airon is 197。, what is the camera constant for the photograph? (2) Index the pattern B given that it is from aluminum, a= 197。 (3) The diffraction pattern C is from airon containing precipitates of CrN (fcc, a= 197。 nh1 177。 nk1 177。 nl1 177。11 ggg i ??? ??39。00??— 均勻吸收系數(shù)( Uniform absorption coefficient) 39。 hkl (197。 few thickness very close to strong some distance from diffraction spot strong diffraction thickness fringes fringes BF, except w= 1~ + spot w 177。39。0 ??????運(yùn)動(dòng)學(xué)公式 : 動(dòng)力學(xué)公式 : ? ? ??? 2/)()2( 1 bxyzT a nbR ??? ? 完全位錯(cuò)( perfect dislocations)的襯度 完全位錯(cuò)的圖像是在位錯(cuò)核心一側(cè)的一條黑線 不可見準(zhǔn)則( Invisibility criteria) 位錯(cuò)柏氏矢量的確定( Determination of the Burgers vector) 位錯(cuò)圖像的一般特征: (1) 位于位錯(cuò)核心一側(cè)的一條黑線 (2) 傾斜位錯(cuò)( Inclined dislocations) (3) 圖像寬度( Image width) :當(dāng) sg?0, ??g/3時(shí)為最大 (4) 當(dāng) sg?0時(shí)可見性最佳 (5) 當(dāng) sg?0 及 時(shí)呈現(xiàn)雙線 (6) 位錯(cuò)偶極子( Dislocation dipoles) (7) 垂直表面的位錯(cuò)( End on dislocations) 0?? bg2?? bg? ? ??? 2/)()2( 1 bxyzT a nbR ??? ?0??bg0??bg)1(42ln])1(221[^])1(42)[21(???????? ??????????????C osrubSi nbbR e0^ ?? ubg0??ebg不可見準(zhǔn)則( Invisibility Criteria) 螺位錯(cuò)( screw dislocations) : 可見( Visible) 不可見( Invisible) 刃位錯(cuò)( edge dislocations) : and 混合位錯(cuò)( mixed dislocations) : 0??bg 0?? ebg 0^ ?? ubg不可見( Invisible) 不可見( Invisible) Dislocation Configuration in the foil Screw, 0??bg u // foil surface 0??bg uIncline to foil surface Edge, 0??ebg^81 ??? ubgmand u // foil surface and b // foil normal Edge, 0??bg u // foil surface, that is 0^ ?? ubgMixed, 0??bg0?? ebgand u // foil surface Invisibility Criteria ? ?????tggg dzRgzsii0)](2e x p [)( ???Rg ?? ?a 2? ? gggidzd ?????? )/1()/()/( 39。000 ?????? ? ? ? gggg dzRdgsiidzd ?????????? )/((2)/()/1()/( 0039。 DF: 不對(duì)稱 (2) 與試樣上表面的交線 : 明暗場(chǎng)最外面的條紋襯度相同 與試樣下表面的交線 : 明暗場(chǎng)最外面的條紋襯度相反 (3) 上表面最外一根條紋 : 當(dāng) 是亮的 當(dāng) 是暗的 (4) 當(dāng) 時(shí)不可見 (5) 試樣厚度增加時(shí)增加的新條紋 抽出型( intrinsic)或插入型( extrinsic)層錯(cuò)的識(shí)別 0?? FRg0?? FRg..., . . . . . . . . .2,1,0 ???? FRgRg ?? ?a 2????????? ??????????????FggggRgzsiiidzd (2e x p [)1()1()( 39。000 ???????? ??????? ???????????? )](2e x p [)11()/1()/(039。00 Fggggg Rgzsiidzd ???????Dynamic formulation 層錯(cuò)性質(zhì)的識(shí)別 將操作矢量 g 置于層錯(cuò)暗場(chǎng)象的中心,如果 g 指向最外一根亮條紋 ,那么對(duì)于所有 A類型反射 ( {200}, {222}, {440}等) , 層錯(cuò)是抽出型 的。 EM5 Dislocations and Stacking Faults The Stacking fault energy of a material can be estimated from the separation of partial dislocations by the equation: where G is the shear modulus and and are the Burgers vectors of the partial dislocations. Measure the separation, , of the partial dislocations in photograph L and calculate ? for the dislocation reaction: