【摘要】浙江大學(xué)復(fù)變函數(shù)與積分變換賈厚玉浙江大學(xué)第一章復(fù)數(shù)與復(fù)變函數(shù)第二章解析函數(shù)第三章復(fù)變函數(shù)的積分第四章級(jí)數(shù)第五章留數(shù)第六章保角映射第七章Laplace變換浙江大學(xué)第一章復(fù)數(shù)與復(fù)變函數(shù)復(fù)數(shù)及其代數(shù)運(yùn)算復(fù)數(shù)的表示復(fù)數(shù)的乘冪與方根復(fù)平面點(diǎn)
2024-08-31 20:43
【摘要】復(fù)變函數(shù)與積分變換ComplexFunctionsandIntegralTransformation云南師范大學(xué)物理與電子信息學(xué)院和偉引言在十六世紀(jì)中葉,G.Cardano(1501-1576)在研究一元二次方程時(shí)引進(jìn)了復(fù)數(shù)。他發(fā)現(xiàn)這個(gè)方程沒有根,并
2025-07-14 07:05
【摘要】第四節(jié)區(qū)域第五節(jié)復(fù)變函數(shù)如果z的一個(gè)值對(duì)應(yīng)ω的多個(gè)值,那么稱函數(shù)f(z)是多值復(fù)變函數(shù)函數(shù)和映射的關(guān)系第六節(jié)復(fù)變函數(shù)的極限和連續(xù)性有界閉集上連續(xù)函數(shù)的性質(zhì)
2025-01-25 08:36
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換?初等函數(shù)復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換yieyezfxxsincos)(??1212(),()(),
2024-11-01 01:35
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace逆變換前面主要討論了由已知函數(shù)f(t)求它的象函數(shù)F(s),但在實(shí)際應(yīng)用中常會(huì)碰到與此相反的問題,即已知象函數(shù)F(s)求它的象原函數(shù)f(t).由拉氏變換的概念可知,函數(shù)f(t)的拉氏
2024-11-01 01:29
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換泰勒級(jí)數(shù)z0Kzz00()fzDzzrDzKDzK??設(shè)函數(shù)在區(qū)域內(nèi)解析,而為內(nèi)以為中心的任何一個(gè)圓周,記作,圓周及它的內(nèi)部全含于,
2024-10-23 09:37
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換冪級(jí)數(shù)一、函數(shù)項(xiàng)級(jí)數(shù)1211.()()()()nnnfzfzfzfz????????定義:形如稱為復(fù)函數(shù)項(xiàng)級(jí)數(shù)。2.
2024-10-12 08:55
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換洛朗級(jí)數(shù)一個(gè)以z0為中心的圓域內(nèi)解析的函數(shù)f(z),可以在該圓域內(nèi)展開成z-z0的冪級(jí)數(shù).如果f(z)在z0處不解析,則在z0的鄰域內(nèi)就不能用z-z0的冪級(jí)數(shù)來表示.但是這種情況在實(shí)際問題中卻經(jīng)常遇
2024-10-23 12:51
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換§留數(shù)1.留數(shù)的定義如果函數(shù)f(z)在z0的鄰域D內(nèi)解析,那么根據(jù)柯西積分定理()0.Cfzdz??()Cfzdz?但是,如果z0為f(
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換第五章留數(shù)及其應(yīng)用孤立奇點(diǎn)留數(shù)留數(shù)在定積分計(jì)算上的應(yīng)用復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換
【摘要】積分變換第六章傅氏變換返回前進(jìn)§1傅里葉(Fourier)積分變換§2拉普拉斯(Laplace)積分變換主要內(nèi)容注:積分變換的學(xué)習(xí)中,規(guī)定:§1傅里葉(Fourier)積分變換第六章傅氏變換返回前進(jìn)傅里葉變換——又簡(jiǎn)稱為傅氏變換內(nèi)容:傅氏變換
2024-09-05 18:24
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換本講介紹拉氏變換的基本性質(zhì),它們?cè)诶献儞Q的實(shí)際應(yīng)用中都是很有用的.為方便起見,假定在這些性質(zhì)中,凡是要求拉氏變換的函數(shù)都滿足拉氏變換存在定理的條件,并且把這些函數(shù)的增長(zhǎng)指數(shù)都統(tǒng)一地取為c,在證明性質(zhì)時(shí)不再重述這些條
2024-10-12 08:54
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換Laplace變換的應(yīng)用對(duì)一個(gè)系統(tǒng)進(jìn)行分析和研究,首先要知道該系統(tǒng)的數(shù)學(xué)模型,也就是要建立該系統(tǒng)特性的數(shù)學(xué)表達(dá)式.所謂線性系統(tǒng),在許多場(chǎng)合,它的數(shù)學(xué)模型可以用一個(gè)線性微分方程來描述,或者說是滿足疊加原理的一類
2024-11-01 01:30
【摘要】習(xí)題一習(xí)題二
2025-02-26 01:09
【摘要】2由牛頓——萊布尼茲公式,可以通過不定積分來計(jì)算定積分.一般是將定積分的計(jì)算截然分成兩步:先計(jì)算相應(yīng)的不定積分,然后再運(yùn)用牛頓——萊布尼茲公式代值計(jì)算出定積分.這種作法相當(dāng)麻煩,我們希望將不定積分的計(jì)算方法與牛頓——萊布尼茲公式有機(jī)地結(jié)合起來,構(gòu)成定積分自身的計(jì)算方法——定積分的換元法和定積
2025-03-08 14:34