freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于光子晶體的表面環(huán)諧振器通信工程等專業(yè)畢業(yè)設(shè)計外文翻譯-中英文對照-在線瀏覽

2025-08-08 16:31本頁面
  

【正文】 輸光譜通過將端口 B、 C和 D的能量總和作為總輸入的能量。在共振頻率下,絕大部分能量通過環(huán)諧振腔從輸入波導(dǎo)轉(zhuǎn)移到輸出波導(dǎo)。即 FSR之間應(yīng)滿足的相鄰兩個共振峰頻率間隔,在這里是 ( c/a) 。 圖 3( c)描述的是頻率在 ( c/a) f( c/a) 之間的能量傳輸譜。諧振器有大約 6474的品質(zhì)因子,這是相對于其他類型的環(huán)諧振器最高的品質(zhì)因子結(jié)果,可以通過增大環(huán)諧振器的半徑來改善品質(zhì)因子。通過光波端口 A在 f = ( c/a) 下,輸入波導(dǎo)被激活。你可以看到,在 SMRW的共振頻率下電磁場強烈增強。這些光波輻射在兩個平行 SMWs之間反復(fù)地反射。 圖 3( e) 顯示的是頻率在 ( c/a) f( c/a)之間的透視圖 。在某些頻率下,前端下降提高了,到目前為止具體機制還不了解。然而,順時針和逆時針傳播的諧振模式由于相互耦合而相關(guān)。 圖 3 ( f) 闡述了在半徑為環(huán) R = 7a,頻率 f = ( c/a)的 環(huán)諧振腔電場 的 分布。 ( a) 在 R = 4a時 環(huán)諧振器 原理示意圖 。 ( c) 頻率在 ( c/a) f ( c/a)之間的能量透射譜 。標(biāo)示在圖 3( a)中的 參數(shù) 分別為 R =4a、 D = a, d = , dc = 和 gu= gb = 。圖 4( b) 顯示 的是在端口 B、 C和 D的透射 光譜 , 它 們 分別 用 厚實 ,點虛線形和薄 實 曲線 表示 。圖 4( c)顯示的是頻率在 ( c/a)f( c/a)之間的透射特性, 諧振腔品質(zhì)因子有 1223左右。如果 在頻率 f = ( c/a)下 波長 是 1550nm, 晶格常數(shù)是 m, 所以 SMRW半徑為 R = 4 a大約是 m。 這種結(jié)構(gòu)提供了 通道濾波器 的 可能性 , 并可用于未來光波分復(fù)用 通信系統(tǒng) 。 參考文獻 : [1] S. Otto, SPIE 6872 (2021) 68720H. [2] B. Wang, . Wang, Appl. Phys. Lett. 89 (2021) 133106. [3] XiaoSanshui , LiuLiu , QiuLiu , Opt. Express 14 (7) (2021) 2932. [4] . Little, . Chu, . Haus, J. Foresi, . Laine, IEEE J. Lightwave Technol. 15 (1997) 998. [5] T. Barwicz, M. Popovic, P. Rakich, M. Watts, H. Haus, E. Ippen, H. Smith, Opt. Express 12 (2021) 1437. [6] JanneMatti Heinola, Kimmo Tolsa, IEEE Trans. Dielec. Elec. Insul. 13 (4) (August2021) 717. [7] . Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. Van Thourhout, R. Baets, IEEE Photon. Technol. Lett. 21 (14) (July 15, 2021) 960. [8] Zexuan Qiang, Weidong Zhou, Richard A. Soref, Opt. Express 15 (2021) 1823. [9] WeiYu Chiu, TaiWei Huang, Wu. YenHsiang, YiJen Chan, ChiaHunag Hou, YiJen Chan, ChiaHunag Hou, Huang Ta Chien, ChiiChang Chen, Opt. Express 15 (2021) 15500. [10] V. Dinesh Kumar, T. Srinivas, A. Selvarajan, Photon. Nanostr. 2 (3) (2021) 199. [11] SeokHwan Jeong, Junichiro Sugisaka, Noritsugu Yamamoto, Makoto Okano, Kazuhiro Komori, Jpn. J. Appl. Phys. 46 (2021) L534. [12] Ma Max, Kazuhiko Qgusu, Jpn. J. Appl. Phys. 49 (2021) 052021. [13] . Rahachou, . Zozoulenko, J. Opt. Soc. Am. B 23 (2021) 1679. [14] . Liu, . Khoo, . Cheng, . Li, J. Li, Appl. Phys. Lett. 92 (2021) 021119. [15] Ziyang Zhang, Matteo Dainese, Lech Wosinski, Min Qiu, Opt. Express 16 (7) (2021) 4621. Macromol. Symp. 2021, 281, 119–125 DOI: Latex Film Formation in the Environmental Scanning Electron Microscope Kalin Dragnevski,*1 Athene Donald,1 Phil Taylor,2 Martin Murray,3 Simon Davies,3 Elizabeth Bone3 Summary: Environmental scanning electron microscopy (E SEM) was used to study the film formation mechanisms and extent of coalescence of three acrylic latex positions with different glass transition temperatures (Tg), here defined as standard low Tg, standardhigh Tg (both carboxymethyl cellulose stabilised) and novel (stabilised with a novel polysaccharide derived from agricultural waste). The ESEM analysis revealed that the microstructure of the standard – lowTg system consisted of individual particles in dispersion and upon evaporation a continuous film formed, whereas in the case of the standard high Tg latex particle deformation was not observed, but particle aggregation resulted in the formation of crystallike structures that have formed via the formation of stacking faults. However, in the case of the novel system the microstructure consisted of individual particles and clusters and during evaporation a discontinuous film formed with voids present within its structure and some of the clusters accumulating on the surface of the specimens. Keywords: ESEM。 polymer latex Introduction Polymer latices, with their wide range of applications, have been the subject of many theoretical and experimental studies. When used for its traditional applications, . as paint or adhesive, the latex is applied in its wet state to a surface and allowed to dry and form film under ambient conditions. Therefore, conventional electron micro scopy, with its extreme drying and sample preparation requirements, will not be suitable for the examination of latices in their natural wet state. On the other hand, environmental scanning electron micro scopy[1 ], which offers the possibility of 1 Sector of Biological amp。 Co. KGaA, Weinheim 120 Macromol. Symp. 2021, 281, 119–125 Figure 1. Schematic representation of an idealized film formation process. Adapted from Keddie et al. to include the intermediate Stage II . ble to produce evaporation conditions within the specimen chamber, which allows examination of the process of film forma tion. As mentioned above, polymer latices are important industrial products and the subject of many researc h studies. Latex, which is an example of a wet insulating material, can be defined as a colloida l suspension of spherical polymer particles with varying diameters. When water is allowed to evaporate from the system, the aqueous suspension undergoes a series of transformations , which result in the forma tion of a continuous dry polymer film. This process, known as film formation, contains four main stages that can be described as follows:[9–17] Stage I – dispersed suspension of polymer particles。 Stage III – ordered array of deformed particles。 Co. KGaA, Weinheim Macromol. Symp. 2021, 281, 119–125 121 significant amount of interfacially active protein 15%. It is suggested that the initial latex particle stabilization es from the protein ponent and ultimately the polysaccharide ponent stabilises
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1