【正文】
4)車輛安排;( 5)選擇配送線路;( 6)確定最終的配送順序;( 7)完成車輛積載 。( 1)輕重搭配的原則;( 2)大小搭配的原則;( 3)貨物性質搭配的原則;( 4)確定合理的堆碼層次及方法。 配送中心規(guī)劃和設計的要素有哪些? 在配送中心的規(guī)劃過程中,公司除了必須先了解配送中心屬于哪一種類型外,還要注意配送中心的規(guī)劃要素。 聯(lián)系實際回答配 送中心具有哪些功能 ?答:( 1)采購功能;( 2)存儲功能;( 3)分揀功能;( 4)集散功能;( 5)銜接功能,( 6)流通加工功能。 庫存規(guī)劃 指在一定區(qū)域或庫區(qū)內,對倉庫的平面布局、數量、規(guī)模、地理位置和倉庫內設施等各要素進行科學的規(guī)劃和整體設計。是對用戶提供比較全面服務的一種配送形式,它可以很快配齊用戶所需的各種物資,從而減輕用戶的進貨負擔。 二、單項選擇題(每小題 1 分,共 20 分) 商品倉儲活動具有生產性質,但與一般的物資生產活動不同,其區(qū)別在于( C )。這體現(xiàn)的是倉儲合同的( A )原則。 A、普通倉庫; B、稅倉庫; C、儲存型倉庫; D、一般專用倉庫; 倉庫出入庫管理中最基本的出庫原則是( D )。 A、入庫通知單; B、訂貨合同; C、運單; D、發(fā)票 商品盤點是對庫存商品進行商品保管帳、庫存商品和( A )三方面的數量核對工作。 A、生產周期; B、運輸頻次; C、平均需求量; D、庫存水平 經濟批量模型是通過平衡( D )和保管倉儲成本,確定一個最佳的訂貨數量來實現(xiàn)最低總庫存成本的方法 A、生產 成本; B、分銷成本; C、運輸成本; D、采購進貨成本 倉庫選址方法中最簡單的方法是( A )。這種庫址選擇方法稱作( D )。 A、配送實質就是送貨,和一般送貨沒有區(qū)別 B、配送要完全遵循“按用戶要求”,只有 這樣才能做到配送的合理化 C、配送是物流中一種特殊的、綜合的活動形式,與商流是沒有關系的 D、配送是“配”和“送”的有機結合,為追求整個配送的優(yōu)勢,分揀、配貨工作是必不可少的。 A、運輸業(yè); B、服務業(yè); C、倉庫業(yè); D、流通業(yè) 1用于支持陪送的貨物存儲的兩種具體形態(tài)是( A )。 A、入庫單; B、驗收單; C、倉單; D、提單 1自用型配送中心最初不具備的功能是( D )。 A、收貨; B、存貨; C、發(fā)貨; D、退貨 1根據《道路貨物運輸管理方法》的有關規(guī)定,快件貨運是指接受委托的當天 15 時起算,( C )。 A、支線; B、干線; C、城市; D、跨境 1變動成本是指隨( A )的變化而發(fā)生變化的成本。 A、支付形態(tài); B、功能; C、適 用對象; D、性質 三、多項選擇題(每小題 3 分,共 15 分,多選少選均不得分) 倉儲管理的基本原則有如下幾條( ADE )。 A、復雜性; B、廣泛性; C、科學性; D、不均衡性; E、非連續(xù)性 倉庫選址的方法有( ABCD )。 A、批組補貨; B、成組補貨; C、定時補貨; D、隨機補貨; E、直接補貨 整車貨物運輸作業(yè)過程,由四個相互關聯(lián)又相互區(qū)別的過程構成,即( BCDE )。 ( ) 倉儲物的任何耗損和短少保管人都應該予以賠償。 ( ) 安全庫存是指企業(yè)在正常的經營環(huán)境中為滿足日常的需要而建立的庫存。 ( ) 物資倉庫網點的配置,只是確定倉庫設在某一地區(qū)或某一城市。這項工作就是地區(qū)選擇。 ( ) 送貨作業(yè) 是配送作業(yè)的首要環(huán)節(jié)。 (√ ) 為提高配送效率,確保貨物質量,必須首先對特性差異大的貨物進行分類。 ( ) 1實施延遲策略采用的物流延遲也稱形成延遲。( 2)邊際成本定價法 邊際成本定價法是指在配送達到規(guī)模經濟時,利用邊際成本作為價格的一種定價方法。在配送市場上,當供需雙方的數量與價格關系相同,達到平衡,此時形成的價格就是市場均衡價格,該價格同時也是配送供應商所能定的最高價格。市場需求總的 來說,正常定價不能低于成本,但也不能高于市場均衡價格。答:不可以。 請您刪除一下內容, O(∩ _∩ )O 謝謝?。?! 2021 年中央電大期末復習考試小抄大全,電大期末考試必備小抄,電大考試必過小抄Acetylcholine is a neurotransmitter released from nerve endings (terminals) in both the peripheral and the central nervous systems. It is synthesized within the nerve terminal from choline, taken up from the tissue fluid into the nerve ending by a specialized transport mechanism. The enzyme necessary for this synthesis is formed in the nerve cell body and passes down the axon to its end, carried in the axoplasmic flow, the slow movement of intracellular substance (cytoplasm). Acetylcholine is stored in the nerve terminal, sequestered in small vesicles awaiting release. When a nerve action potential reaches and invades the nerve terminal, a shower of acetylcholine vesicles is released into the junction (synapse) between the nerve terminal and the ‘effector’ cell which the nerve activates. This may be another nerve cell or a muscle or gland cell. Thus electrical signals are converted to chemical signals, allowing messages to be passed between nerve cells or between nerve cells and nonnerve cells. This process is termed ‘chemical neurotransmission’ and was first demonstrated, for nerves to the heart, by the German pharmacologist Loewi in 1921. Chemical transmission involving acetylcholine is known as ‘cholinergic’. Acetylcholine acts as a transmitter between motor nerves and the fibres of skeletal muscle at all neuromuscular junctions. At this type of synapse, the nerve terminal is closely apposed to the cell membrane of a muscle fibre at the socalled motor end plate. On release, acetylcholine acts almost instantly, to cause a sequence of chemical and physical events (starting with depolarization of the motor endplate) which cause contraction of the muscle fibre. This is exactly what is required for voluntary muscles in which a rapid response to a mand is required. The action of acetylcholine is terminated rapidly, in around 10 milliseconds。 in response to activation of this nerve supply, smooth muscle contracts (notably in the gut), the frequency of heart beat is slowed, and glands secrete. Acetylcholine is also an important transmitter at many sites in the brain at nervetonerve synapses. To understand how acetylcholine brings about a variety of effects in different cells it is necessary to understand membrane receptors. In postsynaptic membranes (those of the cells on which the nerve fibres terminate) there are many different sorts of receptors and some are receptors for acetylcholine. These are protein molecules that react specifically with acetylcholine in a reversible fashion. It is the plex of receptor bined with acetylcholine which brings about a biophysical reaction, resulting in the response from the receptive cell. Two major types of acetylcholine receptors exist in the membranes of cells. The type in skeletal muscle is known as ‘nicotinic’。 and there are some of each type in the brain. These terms are used because nicotine mimics the action of acetylcholine at nicotinic receptors, whereas muscarine, an alkaloid from the mushroom Amanita muscaria, mimics the action of acetylcholine at the muscarinic receptors. Acetylcholine is the neurotransmitter produced by neurons referred to as cholinergic neurons. In the peripheral nervous system acetylcholine plays a role in skeletal muscle movement, as well as in the regulation of smooth muscle and cardiac muscle. In the central nervous system acetylcholine is believed to be involved in learning, memory, and mood. Acetylcholine is synthesized from choline and acetyl coenzyme A through the action of the enzyme choline acetyltransfer