【摘要】2015年周末班學(xué)案自信釋放潛能;付出鑄就成功!WLS二次函數(shù)的最值問(wèn)題【例題精講】題面:當(dāng)-1≤x≤2時(shí),函數(shù)y=2x2-4ax+a2+2a+2有最小值2,求a的所有可能取值.【拓展練習(xí)】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與軸交于(-1,0)、(3,0)兩點(diǎn),頂點(diǎn)為.(1)求此二次函數(shù)解析式;
2025-05-11 06:26
【摘要】二次函數(shù)的最值問(wèn)題練習(xí):已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對(duì)象顯示點(diǎn)隱藏函數(shù)圖像顯示對(duì)象顯示文本對(duì)象顯示對(duì)象顯示點(diǎn)練習(xí):已知函數(shù)y=x2+2x+2,xD,求此
2025-01-15 01:26
【摘要】......二次函數(shù)最值問(wèn)題一.選擇題(共8小題)1.如果多項(xiàng)式P=a2+4a+2014,則P的最小值是( )A.2010 B.2011 C.2012 D.20132.已知二次函數(shù)y=x2﹣6x+m的最小值是﹣
2025-08-10 13:56
【摘要】一元二次函數(shù)的最值問(wèn)題????????一元二次函數(shù)的最值問(wèn)題是高一知識(shí)中的一個(gè)重點(diǎn)、熱點(diǎn),也是同學(xué)們?cè)趯W(xué)習(xí)過(guò)程中普遍感到困惑的一個(gè)難點(diǎn),它考查了函數(shù)的單調(diào)性,以及數(shù)形結(jié)合、分類(lèi)討論等數(shù)學(xué)思想和方法。下面對(duì)這一知識(shí)點(diǎn)進(jìn)行簡(jiǎn)單總結(jié)。??????
2025-05-11 05:31
【摘要】二次函數(shù)在閉區(qū)間上的最值一、知識(shí)要點(diǎn):一元二次函數(shù)的區(qū)間最值問(wèn)題,核心是函數(shù)對(duì)稱(chēng)軸與給定區(qū)間的相對(duì)位置關(guān)系的討論。一般分為:對(duì)稱(chēng)軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:將配方,得頂點(diǎn)為、對(duì)稱(chēng)軸為當(dāng)時(shí),它的圖象是開(kāi)口向上的拋物線(xiàn),數(shù)形結(jié)合可得在[m,n]上的最值:(1)當(dāng)時(shí),的最小值是的最大值是中的較大者。(2)當(dāng)時(shí)若,由在上是增函
2025-07-03 02:58
【摘要】二次函數(shù)的最值二次函數(shù)的最值問(wèn)題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問(wèn)題難點(diǎn)了解并會(huì)處理含參數(shù)的二次函數(shù)的最值問(wèn)題核心區(qū)間與對(duì)稱(chēng)軸的相對(duì)位置思想數(shù)形結(jié)合分類(lèi)討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y
2025-01-13 00:49
【摘要】二次函數(shù)的最值問(wèn)題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問(wèn)題難點(diǎn)了解并會(huì)處理含參數(shù)的二次函數(shù)的最值問(wèn)題核心區(qū)間與對(duì)稱(chēng)軸的相對(duì)位置思想數(shù)形結(jié)合分類(lèi)討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2025-01-14 21:11
【摘要】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點(diǎn),分別從B,A同時(shí)出發(fā),以1cm/s的速度沿線(xiàn)段BA,AC移動(dòng),當(dāng)移動(dòng)時(shí)間t為何值時(shí),△的面積最大?并求出最大面積。A
2025-05-11 06:24
【摘要】初中數(shù)學(xué)之二次函數(shù)最值問(wèn)題一、選擇題1.(2008年山東省濰坊市)若一次函數(shù)的圖像過(guò)第一、三、四象限,則函數(shù)()B..有最大值2.(2008浙江杭州)如圖,記拋物線(xiàn)的圖象與正半軸的交點(diǎn)為,將線(xiàn)段分成等份.設(shè)分點(diǎn)分別為,,,,過(guò)每個(gè)分點(diǎn)作軸的垂線(xiàn),分別與拋物線(xiàn)交于點(diǎn),,…,,再記直角三角形,,…的面積分別為,,…,這樣就有,,…;記,當(dāng)越來(lái)越大時(shí),你猜想最
2025-05-22 03:45
【摘要】2020年9月15日給定二次函數(shù):y=2x2-8x+1,我們?cè)趺辞笏淖钪?。Oxy2-7解:y=2(x-2)2-7,由圖象知,當(dāng)x=2時(shí),y有最小值,ymin=f(2)=-7,沒(méi)有最大值。小結(jié)、二次函數(shù)y=ax2+bx+c(a≠0)中,y取得最小值當(dāng)自變量x=
【摘要】二次函數(shù)的最值問(wèn)題舉例(附練習(xí)、答案)二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無(wú)最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無(wú)最小值.本節(jié)我們將在這個(gè)基礎(chǔ)上繼續(xù)學(xué)習(xí)當(dāng)自變量在某個(gè)范圍內(nèi)取值時(shí),函數(shù)的最值問(wèn)題.同時(shí)還將學(xué)習(xí)二次函數(shù)的最值問(wèn)題在實(shí)際生活中的簡(jiǎn)單應(yīng)用.【例1】當(dāng)時(shí),求函數(shù)的最大值和
2025-08-10 21:18
【摘要】1《探究二次函數(shù)在閉區(qū)間上的最值》教案教學(xué)目標(biāo):初步掌握解決二次函數(shù)在閉區(qū)間上最值問(wèn)題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,會(huì)運(yùn)用二次函數(shù)在閉區(qū)間上的圖像研究相關(guān)問(wèn)題。:通過(guò)實(shí)驗(yàn),觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問(wèn)題的一般解法和規(guī)律。、態(tài)度與價(jià)值觀:
2025-01-24 23:43
【摘要】二次函數(shù)在給定區(qū)間上的最值問(wèn)題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時(shí)的,只能是其圖像的頂點(diǎn)的橫坐標(biāo)或給定區(qū)間的端點(diǎn).因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線(xiàn)的開(kāi)口方向、對(duì)稱(chēng)軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線(xiàn)的開(kāi)口方向(與二次項(xiàng)系數(shù)的正負(fù)有關(guān)),而關(guān)于對(duì)稱(chēng)軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問(wèn)題的關(guān)鍵.
2025-05-11 06:25
【摘要】閉區(qū)間上二次函數(shù)的最值問(wèn)題一、?教材分析1、教學(xué)背景二次函數(shù)是重要的初等函數(shù)之一,很多問(wèn)題都要化歸為二次函數(shù)來(lái)處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質(zhì),并能靈活地運(yùn)用它的性質(zhì)去解決實(shí)際問(wèn)題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個(gè)方面都有重要的應(yīng)用,主要考察我們分類(lèi)討論和數(shù)形結(jié)合思想。這節(jié)課我們主要學(xué)會(huì)應(yīng)
2025-06-19 23:56
【摘要】二次函數(shù)最值應(yīng)用題1:(導(dǎo)數(shù))統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:,已知甲、乙兩地相距100千米.(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油量最少?最少為多少升?2:(條件最值)如圖所示,校園內(nèi)計(jì)劃修建一