freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

機械專業(yè)畢業(yè)設計外文翻譯--振動的定義和術語-其他專業(yè)-在線瀏覽

2025-03-24 12:29本頁面
  

【正文】 ch case. Speed and Feeds in Machining Speeds feeds, and depth of cut are the three major variables for economical machining. Other variables are the work and tool materials, coolant and geometry of the cutting tool. The rate of metal removal and power required for machining depend upon these variables. The depth of cut, feed, and cutting speed are machine settings that must be established in any metalcutting operation. They all affect the forces, the power, and the rate of metal removal. They can be defined by paring them to the needle and record of a phonograph. The cutting speed is represented by the velocity of the record surface relative to the needle in the tone arm at any instant. Feed is represented by the advance the needle radially inward per revolution, or is the difference in position between two adjacent grooves. Turning on Lathe Centers The basic operations performed on an engine lathe are illustrated in Fig. Those operations performed on extemal surfaces with a single point cutting tool are called turning. Except for drilling, reaming, and tapping, the operations on intermal surfaces are also performed by a single point cutting tool. All machining operations, including turning and boring, can be classified as roughing, finishing, or semifinishing. The objective of a roughing ooperation is to remove the bulk of the material sa repidly and as efficiently as possible, while leaving a small amount of material on the workpiece for the finishing operation. Finishing operations are performed to btain the final size, shape, and surface finish on the workpiece. Sometimes a semifinishing operation will precede the finishing operation to leave a small predetermined and uniform amount of stoxd on the workpiece to be removed by the finishing operation. Generally, longer workpieces are turned while supported on one or two lathe centers. Cone shaped holes, called center holes, which fit the lathe centers are drilled in the ends of the workpieceusually along the axis of the cylindrical part. The end of the workpiece adjacent to the tailstock is always supported by a tailstock center, while the end near the headstock may be supported by a headstock cener or held in a chuck. The headstock end of the workpiece may be held in a fourjar chuck, or in a collet type chuck. This method holds the workpiece firmly and transfers the power to the workpiece smoothly。 together they are driven by a driver p。 then the workpiece can be turned around in the lathe to machine the other end. The center holes in the workpiece serve as precise locating surfaces as well as bearing surfaces to carry the weight of the workpiece and to resist the xutting forces. After the workpiece has been removed from the lathe for any reason, the center holes will accurately align the workpiece back in the lathe or in another lathe,or in a cylindrical grinding machine. The workpiece must never be held at the headstock end by both a chuck and a lathe center. While at first thought this seems like a quick method of aligning the workpiece in the chuck, this must not be done because it is not possible to press evenly with the jaws against the workpiece while it is also supported by the center. The alignment provided by the center will not be maintained and the pressure of the jaws may damage the center hole, the lathe center,and prehaps even the lathe spindle. Compensatng or floating jaw chucks used almost exclusively on high production work provice an exception to the statements made above. These chucks are really work drivers and cannot be used for the same purpose as ordinary three or four=jaw chucks. While very large diameter workpieces are sometimes mounted on two centers, they are preferably held at the headstock end by faceplate jaes to obtain the smooth power transmission。 namely, rough boring and finish boring. The objective of the roughboring operation is to remove the excess metal rapidly and efficiently, and the objective of the finishboring operation is to obtain the desired size, surface finish, and location of the hole. The size of the hole is obtained by using the trialcut procedure. The diameter of the hole can be measured with inside calipers and outside micrometer calipers. Basic Measuring Insteruments, or inside micrometer calipers can be used to measure the diameter directly. Cored holes and drilled holes are sometimes eccentric wwith respect to the rotation of the lathe. When the boring tool enters the work, the boring bar will take a deeper cut on one side of the hole than on the other, and will deflect more when taking this deeper cut,with the result that the bored hole will not be concentric with the rotation of the work. This effect is corrected by taking several
點擊復制文檔內(nèi)容
公司管理相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1