【摘要】圓錐曲線解答題(歷年全國卷真題理科)圓錐曲線解答題(歷年全國卷理科)1、(2017全國Ⅰ)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求的方程;(2)設(shè)直線不經(jīng)過點且與相交于、–1,證明:過定點.2、(2017全國Ⅱ)設(shè)為坐標原點,動點在橢圓:上,過做軸的垂線,垂
2025-05-12 00:04
【摘要】圓錐曲線專題——定點、定值問題定點問題是常見的出題形式,化解這類問題的關(guān)鍵就是引進變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過定點問題通法,是設(shè)出直線方程,通過韋達定理和已知條件找出k和m的一次函數(shù)關(guān)系式,代入直線方程即可。技巧在于:設(shè)哪一條直線?如何轉(zhuǎn)化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質(zhì),這些性質(zhì)往往成為出題老師
2024-09-15 05:10
【摘要】圓錐曲線解答題12大題型解題套路歸納:【高考數(shù)學(xué)中最具震撼力的一個解答題!】注:【求解完第一問以后,】圓錐曲線題10大題型:(1)弦長問題(2)中點問題(3)垂直問題(4)斜率問題(5)對稱問題(6)向量問題(7)切線問題(8)面積問題(9)最值問題(10)焦點三角形問題。中的2-----4類;分門別類按套路求解;:直線與橢圓,拋物線的位置關(guān)系。第一問最高頻考(總與三個問題有關(guān)
2024-09-04 12:41
【摘要】圓錐曲線2020年理科高考解答題薈萃1.(2020浙江理)已知橢圓1C:221(0)yxabab????的右頂點為(1,0)A,過1C的焦點且垂直長軸的弦長為1.(I)求橢圓1C的方程;(II)設(shè)點P在拋物線2C:2()yxhh???R上,2C在點P處的切線與1C交于點,
2024-10-08 14:17
【摘要】......圓錐曲線提高題1.設(shè)拋物線的焦點為,,則到該拋物線準線的距離為_____________。解析:利用拋物線的定義結(jié)合題設(shè)條件可得出p的值為,B點坐標為()所以點B到拋物線準線的距離為,本題主要考察拋物線的定義
2025-05-12 00:03
【摘要】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2024-09-15 04:45
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-09-04 00:15
【摘要】簡化解析幾何的若干途徑AFMCDNBOABCO練習:作業(yè):全優(yōu)期末練習
2025-01-09 19:11
【摘要】......關(guān)于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;
2025-05-12 00:02
【摘要】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
【摘要】知識結(jié)構(gòu)?????圓錐曲線橢圓雙曲線拋物線標準方程幾何性質(zhì)標準方程幾何性質(zhì)標準方程幾何性質(zhì)第二定義第二定義統(tǒng)一定義綜合應(yīng)用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
【摘要】圓錐曲線過定點問題一、小題自測1.無論取任何實數(shù),直線必經(jīng)過一個定點,則這個定點的坐標為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個常見結(jié)論:滿足一定條件的曲線上兩點連結(jié)所得的直線過定點或滿足一定條件的曲線過定點,這構(gòu)成了過定點問題。1、過定點模型:是圓錐曲線上的兩動點,是一定點,其
【摘要】本資料來源于《七彩教育網(wǎng)》全國名校高考專題訓(xùn)練08圓錐曲線三、解答題(第三部分)51、(河北省正定中學(xué)2022年高三第五次月考)已知直線l過橢圓E:2222xy??的右焦點F,且與E相交于,PQ兩點.(1)設(shè)1()2OROPOQ??(O為原點),求點R的軌跡方程;(2)若直線l的傾斜角為6
2025-02-24 19:43
【摘要】第九章 圓錐曲線中的存在性問題解析幾何圓錐曲線中的存在性問題一、基礎(chǔ)知識1、在處理圓錐曲線中的存在性問題時,通常先假定所求的要素(點,線,圖形或是參數(shù))存在,并用代數(shù)形式進行表示。再結(jié)合題目條件進行分析,若能求出相應(yīng)的要素,則假設(shè)成立;否則即判定不存在2、存在性問題常見要素的代數(shù)形式:
【摘要】《圓錐曲線定義》專題練習----QCL1.已知橢圓的兩個焦點為,,且,弦AB過點,則△的周長為()A.10 D.2.過雙曲線的右焦點F2有一條弦PQ,|PQ|=7,F1是左焦點,那么△F1PQ的周長為()B. C. D.3.為常數(shù),若動點滿足,則點的軌跡所在的曲線是()A.橢圓B.
2025-07-25 17:16