freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

福州精選備戰(zhàn)中考數(shù)學(xué)易錯(cuò)題專題復(fù)習(xí)二次函數(shù)-在線瀏覽

2025-04-02 05:26本頁面
  

【正文】 E的長,F(xiàn)H就知道了,先由拋物線解析式求出點(diǎn)E坐標(biāo),根據(jù)勾股定理可求BE,再根據(jù)三角形中位線定理求線段HF的長.試題解析:(1)∵拋物線y=x2+bx+c經(jīng)過點(diǎn)A(﹣1,0),B(3,0),∴把A,B兩點(diǎn)坐標(biāo)代入得:,解得:,∴拋物線的解析式是:y=2x3;(2)∵點(diǎn)E(2,m)在拋物線上,∴把E點(diǎn)坐標(biāo)代入拋物線解析式y(tǒng)=2x3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵點(diǎn)F是AE中點(diǎn),點(diǎn)H是拋物線的對稱軸與x軸交點(diǎn),即H為AB的中點(diǎn),∴FH是三角形ABE的中位線,∴FH=BE==.∴線段FH的長.考點(diǎn):1.待定系數(shù)法求拋物線的解析式;2.勾股定理;3.三角形中位線定理.2.(10分)(2015?佛山)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.(1)請用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點(diǎn)M的坐標(biāo).【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】試題分析:(1)利用配方法拋物線的一般式化為頂點(diǎn)式,即可求出二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)聯(lián)立兩解析式,可求出交點(diǎn)A的坐標(biāo);(3)作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入數(shù)值計(jì)算即可求解;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個(gè)三角形面積相等,可得△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,將P(2,4)代入,求出直線PM的解析式為y=x+3.再與拋物線的解析式聯(lián)立,得到方程組,解方程組即可求出點(diǎn)M的坐標(biāo).試題解析:(1)由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo)為(2,4);(2)聯(lián)立兩解析式可得:,解得:,或.故可得點(diǎn)A的坐標(biāo)為(,);(3)如圖,作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=24+(+4)(﹣2)﹣=4+﹣=;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,∵P的坐標(biāo)為(2,4),∴4=2+b,解得b=3,∴直線PM的解析式為y=x+3.由,解得,∴點(diǎn)M的坐標(biāo)為(,).考點(diǎn):二次函數(shù)的綜合題3.如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).(1)求這個(gè)二次函數(shù)的解析式;(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);(3)對于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90176。?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.【答案】(1)y=x2﹣3x。(3)存在;理由見解析;【解析】【分析】(1)將原點(diǎn)坐標(biāo)代入拋物線中即可求出k的值,從而求得拋物線的解析式。(3)根據(jù)B點(diǎn)坐標(biāo)可求出直線OB的解析式,由于OB⊥OP,由此可求出P點(diǎn)的坐標(biāo)特點(diǎn),代入二次函數(shù)解析式可得出P點(diǎn)的坐標(biāo).求△POB的面積時(shí),求出OB,OP的長度即可求出△BOP的面積。∴這個(gè)二次函數(shù)的解析式為y=x2﹣3x?!郃O=3。∴BD=4。又∵頂點(diǎn)坐標(biāo)為:( ,﹣),<4,∴x軸下方不存在B點(diǎn)。(3)存在。若∠POB=90176。設(shè)P點(diǎn)坐標(biāo)為(x,x2﹣3x)。若,解得x=4 或x=0(舍去)。若,解得x=2 或x=0(舍去)?!帱c(diǎn)P 的坐標(biāo)為(2,﹣2)。∵∠POB=90176。4.已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.【答案】(1)b=﹣2a,頂點(diǎn)D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<.【解析】【分析】(1)把M點(diǎn)坐標(biāo)代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點(diǎn)式可求得其頂點(diǎn)D的坐標(biāo);(2)把點(diǎn)M(1,0)代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點(diǎn)N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得△DMN的面積即可;(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個(gè)公共點(diǎn)時(shí),t的值,再確定當(dāng)線段一個(gè)端點(diǎn)在拋物線上時(shí),t的值,可得:線段GH與拋物線有兩個(gè)不同的公共點(diǎn)時(shí)t的取值范圍.【詳解】解:(1)∵拋物線y=ax2+ax+b有一個(gè)公共點(diǎn)M(1,0),∴a+a+b=0,即b=2a,∴y=ax2+ax+b=ax2+ax2a=a(x+)2,∴拋物線頂點(diǎn)D的坐標(biāo)為(,);(2)∵直線y=2x+m經(jīng)過點(diǎn)M(1,0),∴0=21+m,解得m=2,∴y=2x2,則,得ax2+(a2)x2a+2=0,∴(x1)(ax+2a2)=0,解得x=1或x=2,∴N點(diǎn)坐標(biāo)為(2,6),∵a<b,即a<2a,∴a<0,如圖1,設(shè)拋物線對稱軸交直線于點(diǎn)E,∵拋物線對稱軸為,∴E(,3),∵M(jìn)(1,0),N(2,6),設(shè)△DMN的面積為S,∴S=S△DEN+S△DEM=|( 2)1|?|(3)|=??a,(3)當(dāng)a=1時(shí),拋物線的解析式為:y=x2x+2=(x+)2+,由,x2x+2=2x,解得:x1=2,x2=1,∴G(1,2),∵點(diǎn)G、H關(guān)于原點(diǎn)對稱,∴H(1,2),設(shè)直線GH平移后的解析式為:y=2x+t,
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1