freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題復(fù)習(xí)題(含答案)(4)-在線瀏覽

2025-04-02 03:23本頁面
  

【正文】 出表示無理數(shù)的點(diǎn)的方法后,進(jìn)行練習(xí):首先畫數(shù)軸,原點(diǎn)為O,在數(shù)軸上找到表示數(shù)2的點(diǎn)A,然后過點(diǎn)A作AB⊥OA,使AB=3(如圖).以O(shè)為圓心,OB的長為半徑作弧,交數(shù)軸正半軸于點(diǎn)P,則點(diǎn)P所表示的數(shù)介于( )A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間18.如圖是我國一位古代數(shù)學(xué)家在注解《周髀算經(jīng)》時(shí)給出的,曾被選為2002年在北京召開的國際數(shù)學(xué)家大會(huì)的會(huì)徽,它通過對圖形的切割、拼接,巧妙地證明了勾股定理,這位偉大的數(shù)學(xué)家是( )A.楊輝 B.劉徽 C.祖沖之 D.趙爽19.“折竹抵地”問題源自《九章算術(shù)》中,即:今有竹高一丈,末折抵地,去本四尺,問折者高幾何?意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)(  )A.3 B.5 C. D.420.下列條件中,不能判定為直角三角形的是( )A. B.C. D.,21.如圖,在等腰Rt△ABC中,∠C=90176。∠ADC=45176。等量代換得到∠ACE+∠DBC=45176?!唷螧AC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正確;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45176?!唷螪BC+∠DCB=∠DBC+∠ACE+∠ACB=45176。=90176?!郆D⊥CE,故②正確;③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45176?!摺螦BD=∠ACE∴∠ACE+∠DBC=45176。直角三角形的性質(zhì),求出∠ABC的度數(shù),然后根據(jù)角平分線的性質(zhì)求出∠CBD=30176。角所對的直角三角形性質(zhì),30176?!螦=30176。30176?!連D平分∠ABC,∴∠ABD=∠ABC=60176?!逤D=1,∠CDB=30176。∴AB=2 故選B.【點(diǎn)睛】此題主要考查了30176。角所對直角邊等于斜邊的一半求解.3.C解析:C【解析】【分析】根據(jù)勾股定理求解即可,注意要確認(rèn)a是直角邊還是斜邊.【詳解】解:當(dāng)a是直角三角形的斜邊時(shí), ;當(dāng)a為直角三角形的直角邊時(shí),.故選C.【點(diǎn)睛】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.4.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn),的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中, ,∴,∴從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為.故選D.【點(diǎn)睛】本題考查了平面展開最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.5.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號的面積加上2號的面積,b的面積等于2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據(jù)此可以求出三個(gè)的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點(diǎn)睛】本題主要考查勾股定理的應(yīng)用,熟練掌握相關(guān)性質(zhì)定理是解題關(guān)鍵.6.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點(diǎn)睛】此題是翻折問題,利用勾股定理求線段的長度.7.D解析:D【分析】根據(jù)已知設(shè)AC=x,BC=y(tǒng),在Rt△ACD和Rt△BCE中,根據(jù)勾股定理分別列等式,從而求得AC,BC的長,最后根據(jù)勾股定理即可求得AB的長.【詳解】如圖,在△ABC中,∠C=90176。長度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,于是得到結(jié)論.【詳解】解:當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC39。AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,∴AC′=ABBC′=2cm.故選:C.【點(diǎn)睛】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.9.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,然后設(shè),繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1