freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

宜昌市中考數(shù)學-易錯易錯壓軸勾股定理選擇題專題練習(含答案)(3)-在線瀏覽

2025-04-02 00:43本頁面
  

【正文】 側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個長方形并排后的長方形的對角線長,設彩帶最短長度為xcm,∵∵易拉罐底面周長是12cm,高是20cm,∴x2=(124)2+202∴x2=(124)2+202,所以彩帶最短是52cm.故選D.【點睛】本題考查了平面展開??最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,4.C解析:C【解析】【分析】根據(jù)勾股定理求解即可,注意要確認a是直角邊還是斜邊.【詳解】解:當a是直角三角形的斜邊時, ;當a為直角三角形的直角邊時,.故選C.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.5.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(1802∠EDC)=90∠EDC,∴∠DEB= 90∠EDH=90(90∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設DG=x,則CG=5x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點睛】此題考查翻折的性質(zhì),勾股定理,等腰三角形的性質(zhì),將求BE轉(zhuǎn)換為求其一半的長度的想法是關(guān)鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長度.6.B解析:B【分析】過點O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長,易得四邊形ADFO為正方形,根據(jù)線段間的轉(zhuǎn)化即可得出結(jié)果.【詳解】解:過點O作OE⊥BC于E,OF⊥AC于F, ∵BO,CO分別為∠ABC,∠ACB的平分線,所以OD=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四邊形ADOE為矩形,∴四邊形ADOE為正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故選:B.【點睛】此題考查了角平分線的定義與性質(zhì),以及全等三角形的判定與性質(zhì),屬于中考??碱}型.7.B解析:B【解析】【分析】根據(jù)完全平方公式利用a+b=10,ab=18求出,即可得到三角形的形狀.【詳解】∵a+b=10,ab=18,∴=(a+b)22ab=10036=64,∵,c=8,∴=64,∴=,∴該三角形是直角三角形,故選:B.【點睛】此題考查勾股定理的逆定理,完全平方公式,能夠利用完全平方公式由已知條件求出是解題的關(guān)鍵.8.C解析:C【分析】當C′落在AB上,點B與E重合時,AC39。長度的值最小,∵∠C=90176。D,AE=A39。處,所以AD=A39。E,所以陰影部分圖形的周長=BD+A39。E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故選:D.【點睛】此題考查了折疊的性質(zhì)與等邊三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應用以及折疊前后圖形的對應關(guān)系.10.C解析:C【分析】將容器側(cè)面展開,建立A關(guān)于上邊沿的對稱點A’,根據(jù)兩點之間線段最短可知A’B的長度為最短路徑15,構(gòu)造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側(cè)面展開,作A關(guān)于EF的對稱點,連接,則即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.11.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,然后設,繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,
點擊復制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1