freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題題分類(lèi)匯編(及答案)(10)-在線瀏覽

2025-04-01 23:12本頁(yè)面
  

【正文】 角形。 B.對(duì)角線互相平分 C.對(duì)角線相等 D.對(duì)角線互相垂直21.如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,過(guò)點(diǎn)作直線垂直于,在上取點(diǎn),使,以點(diǎn)為圓心,以為半徑作弧,弧與數(shù)軸的交點(diǎn)所表示的數(shù)為( )A. B. C. D.22.在中,邊上的中線,則的面積為( )A.6 B.7 C.8 D.923.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若,大正方形的面積為13,則小正方形的面積為( ?。〢.3 B.4 C.5 D.624.已知,為正數(shù),且,如果以,的長(zhǎng)為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長(zhǎng)的正方形的面積為( )A.5 B.25 C.7 D.1525.如圖,AB=AC,∠CAB=90176。AD=1,CD=3,則BD的長(zhǎng)為( )A.3 B. C.2 D.426.如圖,中,有一點(diǎn)在上移動(dòng).若,則的最小值為( )A.8 B. C. D.1027.如圖是由“趙爽弦圖”變化得到的,它由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為SS+S2+S3=15,則S2的值是( )A.3 B. C.5 D.28.勾股定理是“人類(lèi)最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”.我國(guó)對(duì)勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時(shí)給出的,他用來(lái)證明勾股定理的圖案被稱(chēng)為“趙爽弦圖”.2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)大會(huì)選它作為會(huì)徽.下列圖案中是“趙爽弦圖”的是( )A. B. C. D.29.下列說(shuō)法不能得到直角三角形的( )A.三個(gè)角度之比為 1:2:3 的三角形 B.三個(gè)邊長(zhǎng)之比為 3:4:5 的三角形C.三個(gè)邊長(zhǎng)之比為 8:16:17 的三角形 D.三個(gè)角度之比為 1:1:2 的三角形30.我國(guó)古代數(shù)學(xué)家劉徽將勾股形(古人稱(chēng)直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的三角形,如圖所示,已知正方形的邊長(zhǎng)是,則的長(zhǎng)為( )A. B. C. D.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90176。又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=ACAE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選B.【點(diǎn)睛】本題考查了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理.解題的關(guān)鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.2.B解析:B【分析】設(shè)小正方形的邊長(zhǎng)為x,則矩形的一邊長(zhǎng)為(a+x),另一邊為(b+x),根據(jù)矩形的面積的即等于兩個(gè)三角形的面積之和,也等于長(zhǎng)乘以寬,列出方程,化簡(jiǎn)再代入a,b的值,得出x2+7x=12,再根據(jù)矩形的面積公式,整體代入即可.【詳解】設(shè)小正方形的邊長(zhǎng)為x,則矩形的一邊長(zhǎng)為(a+x),另一邊為(b+x),根據(jù)題意得 :2(ax+x2+bx)=(a+x)(b+x),化簡(jiǎn)得 :ax+x2+bxab=0,又∵ a = 3 , b = 4 ,∴x2+7x=12。直角三角形的性質(zhì),求出∠ABC的度數(shù),然后根據(jù)角平分線的性質(zhì)求出∠CBD=30176。角所對(duì)的直角三角形性質(zhì),30176。∠A=30176。30176?!連D平分∠ABC,∴∠ABD=∠ABC=60176。∵CD=1,∠CDB=30176?!郃B=2 故選B.【點(diǎn)睛】此題主要考查了30176。角所對(duì)直角邊等于斜邊的一半求解.5.C解析:C【解析】【分析】根據(jù)三角形的面積判斷出PE+PF的長(zhǎng)等于AC的長(zhǎng),這樣就變成了求AC的長(zhǎng);在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的長(zhǎng),再利用勾股定理就可以求出AC的長(zhǎng),也就是PE+PF的長(zhǎng).【詳解】∵△DCB為等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=BD?PE+CD?PF=BD?AC,∴PE+PF=AC,設(shè)AD=x,BD=CD=3x,AB=4x,∵AC2=CD2AD2=(3x)2x2=8x2,∵AC2=BC2AB2=()2(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點(diǎn)睛】本題考查勾股定理、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用面積法證明線段之間的關(guān)系,靈活運(yùn)用勾股定理解決問(wèn)題,屬于中考??碱}型.6.D解析:D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長(zhǎng),根據(jù)勾股定理、完全平方公式計(jì)算即可。長(zhǎng)度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,于是得到結(jié)論.【詳解】解:當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC39。AC=4cm,BC
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1