freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學平行四邊形的綜合專項訓練附答案-在線瀏覽

2025-03-31 22:55本頁面
  

【正文】 ∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當x=2時,BE+CF取最小值,∴AP=2.考點:幾何變換綜合題.3.如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落到到B′的位置,AB′與CD交于點E.(1)求證:△AED≌△CEB′(2)若AB = 8,DE = 3,點P為線段AC上任意一點,PG⊥AE于G,PH⊥ + PH的值.【答案】(1)證明見解析;(2).【解析】【分析】(1)由折疊的性質(zhì)知,則由得到;(2)由,可得,又由,即可求得的長,然后在中,利用勾股定理即可求得的長,再過點作于,由角平分線的性質(zhì),可得,易證得四邊形是矩形,繼而可求得答案.【詳解】(1)四邊形為矩形, ,又 , ;(2) , , , ,在中,過點作于, , , , , 、共線, ,四邊形是矩形, , .【點睛】此題考查了折疊的性質(zhì)、矩形的性質(zhì)、角平分線的性質(zhì)、注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.4.如果兩個三角形的兩條邊對應(yīng)相等,夾角互補,那么這兩個三角形叫做互補三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補三角形.(1)用尺規(guī)將圖1中的△ABC分割成兩個互補三角形;(2)證明圖2中的△ABC分割成兩個互補三角形;(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.①已知三個正方形面積分別是1110,在如圖4的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長為1)畫出邊長為、的三角形,并計算圖3中六邊形DEFGHI的面積.②若△ABC的面積為2,求以EF、DI、HG的長為邊的三角形面積.【答案】(1)作圖見解析(2)證明見解析(3)①62;②6【解析】試題分析:(1)作BC邊上的中線AD即可.(2)根據(jù)互補三角形的定義證明即可.(3)①畫出圖形后,利用割補法求面積即可.②平移△CHG到AMF,連接EM,IM,則AM=CH=BI,只要證明S△EFM=3S△ABC即可.試題解析:(1)如圖1中,作BC邊上的中線AD,△ABD和△ADC是互補三角形.(2)如圖2中,延長FA到點H,使得AH=AF,連接EH.∵四邊形ABDE,四邊形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90176?!唷鰽EF和△ABC是兩個互補三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90176。+90176。﹣x,∵∠DBI=360176。﹣90176。﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180176。時,四邊形BFED為菱形,理由見解析.【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對角線BD的中點,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當∠DOE=90176?!郋F⊥BD,∴四邊形BFDE為菱形.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.8.如圖,正方形ABCD的邊長為8,E為BC上一定點,BE=6,F(xiàn)為AB上一動點,把△BEF沿EF折疊,點B落在點B′處,當△AFB′恰好為直角三角形時,B′D的長為?【答案】或【解析】【分析】分兩種情況分析:如圖1,當∠AB′F=90176。時,由題意可知此時四邊形EBFB′是正方形,AF=2,過點B′作B′N⊥AD,則四邊形AFB′N為矩形,在Rt△CB′N中,由勾股定理得,B′D=;【詳解】如圖1,當∠AB′F=90176。∴AE==10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90176。時,由題意可知此時四邊形EBFB′是正方形,∴AF=2,過點B′作B′N⊥AD,則四邊形AFB′N為矩形,∴AN=B′F=6,B′N=AF=2,∴DN=ADAN=2,在Rt△CB′N中,由勾股定理得,B′D= = ;綜上,可得B′D的長為或.【點睛】本題主要考查正方形的性質(zhì)與判定,矩形有性質(zhì)判定、勾股定理、折疊的性質(zhì)等,能正確地畫出圖形并能分類討論是解題的關(guān)鍵.9.已知AD是△ABC的中線P是線段AD上的一點(不與點A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點,AD與EF交于點M;(1)如圖1,當AB=AC時,求證:四邊形EGHF是矩形;(2)如圖2,當點P與點M重合時,在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).【答案】(1)見解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位線定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,證得四邊形EGHF是平行四邊形,證得EF⊥AP,推出EF⊥EG,即可得出結(jié)論;(2)由△APE與△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點,∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點,∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于
點擊復制文檔內(nèi)容
教學教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1