freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)-平行四邊形綜合試題及答案解析-在線瀏覽

2025-03-31 22:29本頁面
  

【正文】 則可根據(jù)“SAS”證明△ADG≌△CDG,所以∠DAG=∠DCG;②根據(jù)正方形的性質(zhì)得AB=DC,∠BAD=∠CDA=90176。備戰(zhàn)中考數(shù)學(xué) 平行四邊形綜合試題及答案解析一、平行四邊形1.四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.(1)如圖1,當點E、F在線段AD上時,①求證:∠DAG=∠DCG;②猜想AG與BE的位置關(guān)系,并加以證明;(2)如圖2,在(1)條件下,連接HO,試說明HO平分∠BHG;(3)當點E、F運動到如圖3所示的位置時,其它條件不變,請將圖形補充完整,并直接寫出∠BHO的度數(shù).【答案】(1)①證明見解析;②AG⊥BE.理由見解析;(2)證明見解析;(3)∠BHO=45176。.【解析】試題分析:(1)①根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45176。根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90176。于是可判斷AG⊥BE;(2)如答圖1所示,過點O作OM⊥BE于點M,ON⊥AG于點N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立;(3)如答圖2所示,與(1)同理,可以證明AG⊥BE;過點O作OM⊥BE于點M,ON⊥AG于點N,構(gòu)造全等三角形△AON≌△BOM,從而證明OMHN為正方形,所以HO平分∠BHG,即∠BHO=45176。在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四邊形ABCD為正方形,∴AB=DC,∠BAD=∠CDA=90176?!唷螦BE+∠BAG=90176。∴AG⊥BE;(2)由(1)可知AG⊥BE.如答圖1所示,過點O作OM⊥BE于點M,ON⊥AG于點N,則四邊形OMHN為矩形.∴∠MON=90176。∠BOM+∠OBM=90176。.與(1)同理,可以證明AG⊥BE.過點O作OM⊥BE于點M,ON⊥AG于點N,與(2)同理,可以證明△AON≌△BOM,可得OMHN為正方形,所以HO平分∠BHG,∴∠BHO=45176。;(2)如圖2,當b>2a時,點M在運動的過程中,是否存在∠BMC=90176。(3)不成立.理由如下見解析.【解析】試題分析:(1)由b=2a,點M是AD的中點,可得AB=AM=MD=DC=a,又由四邊形ABCD是矩形,即可求得∠AMB=∠DMC=45176。;(2)由∠BMC=90176?!唷螦MB=∠DMC=45176。.(2)存在,理由:若∠BMC=90176。又∵∠AMB+∠ABM=90176?!唷鰽BM∽△DMC,∴,設(shè)AM=x,則,整理得:x2﹣bx+a2=0,∵b>2a,a>0,b>0,∴△=b2﹣4a2>0,∴方程有兩個不相等的實數(shù)根,且兩根均大于零,符合題意,∴當b>2a時,存在∠BMC=90176。由(2)可知x2﹣bx+a2=0,∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程沒有實數(shù)根,∴當b<2a時,不存在∠BMC=90176。角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.(1)連接AE,求證:△AEF是等腰三角形;猜想與發(fā)現(xiàn):(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;結(jié)論2:DM、MN的位置關(guān)系是 ;拓展與探究:(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180176。.從而得到DM、MN的位置關(guān)系是垂直.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90176?!郈E=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,DM、MN的位置關(guān)系是垂直;∵在Rt△ADF中DM是斜邊AF的中線,∴AF=2DM,∵MN是△AEF的中位線,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90176?!進N∥AE,∴∠DMN=∠DGE=90176。BD=BC,點E為CD的中點,射線BE交AD的延長線于點F,連接CF.(1)求證:四邊形BCFD是菱形;(2)若AD=1,BC=2,求BF的長.【答案】(1)證明見解析(2)2【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵點E為CD的中點,∴DE=EC,在△BCE與△FDE中,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四邊形BCDF為平行四邊形,∵BD=BC,∴四邊形BCFD是菱形;(2)∵四邊形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.6.在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45176。得到△ABG(如圖①),求證:△AEG≌△AEF;(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2;(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.【答案】(1)證明見解析;(2)證明見解析;(3)EF2=2BE2+2DF2.【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知AF=AG,∠EAF=∠GAE=45176。得到△ABG,連結(jié)GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90176。得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.試題解析:(1)∵△ADF繞著點A順時針旋轉(zhuǎn)90176。∵∠EAF=45176。在△AGE與△AFE中,∴△AGE≌△AFE(SAS);(2)設(shè)正方形ABCD的邊長為a.將△ADF
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1